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Abstract

Theoretical results suggest that in order to learn the kfrtbmplicated functions that can represent high-
level abstractions (e.g. in vision, language, and othetefé! tasks), one may neetbep architectures
Deep architectures are composed of multiple levels of imeal operations, such as in neural nets with
many hidden layers or in complicated propositional forraula-using many sub-formulae. Searching the
parameter space of deep architectures is a difficult tagkdebening algorithms such as those for Deep
Belief Networks have recently been proposed to tackle thidblpm with notable success, beating the
state-of-the-art in certain areas. This paper discusgmttivations and principles regarding learning
algorithms for deep architectures, in particular thosdastipg as building blocks unsupervised learning
of single-layer models such as Restricted Boltzmann Mashinsed to construct deeper models such as
Deep Belief Networks.

1 Introduction

Allowing computers to model our world well enough to exhibhiat we call intelligence has been the focus
of more than half a century of research. To achieve this, dléar that a large quantity of information
about our world should somehow be stored, explicitly or igifly, in the computer. Because it seems
daunting to formalize manually all that information in arfothat computers can use to answer questions
and generalize to new contexts, many researchers havealttoriearning algorithmsto capture a large
fraction of that information. Much progress has been madmtierstand and improve learning algorithms,
but the challenge of artificial intelligence (Al) remainso e have algorithms that can understand scenes
and describe them in natural language? Not really, exceptrin limited settings. Do we have algorithms
that can infer enough semantic concepts to be able to interdcmost humans using these concepts? No.
If we consider image understanding, one of the best spedfilte Al tasks, we realize that we do not yet
have learning algorithms that can discover the many visndlsemantic concepts that would seem to be
necessary to interpret most images on the web. The situigt&milar for other Al tasks.

Consider for example the task of interpreting an input imsigeh as the one in Figure 1. When humans
try to solve a particular Al task (such as machine vision dura language processing), they often exploit
their intuition about how to decompose the problem into pudbblems and multiple levels of representation,
e.g., in object parts and constellation models (Weber, iW¢ell& Perona, 2000; Niebles & Fei-Fei, 2007;
Sudderth, Torralba, Freeman, & Willsky, 2007) where moétaiparts can be re-used in different object in-
stances. For example, the current state-of-the-art in madalision involves a sequence of modules starting
from pixels and ending in a linear or kernel classifier (PjmdCarlo, & Cox, 2008; Mutch & Lowe, 2008),
with intermediate modules mixing engineered transforametiand learning, e.g. first extracting low-level



features that are invariant to small geometric variatiaeglil as edge detectors from Gabor filters), trans-
forming them gradually (e.g. to make them invariant to casitchanges and contrast inversion, sometimes
by pooling and sub-sampling), and then detecting the megquint patterns. A plausible and common way
to extract useful information from a natural image involsmsforming the raw pixel representation into
gradually more abstract representations, e.g., stamimg the presence of edges, the detection of more com-
plex but local shapes, up to the identification of abstrat#garies associated with sub-objects and objects
which are parts of the image, and putting all these togetheapture enough understanding of the scene to
answer questions about it.

Here, we assume that the computational machinery necessexpress complex behaviors (which one
might label “intelligent”) requireighly varyingmathematical functions, i.e. mathematical functions that
are highly non-linear in terms of raw sensory inputs, angldisa very large number of variations (ups and
downs) across the domain of interest. We view the raw inpthédearning system as a high dimensional
entity, made of many observed variables, which are relagathknown intricate statistical relationships. For
example, using knowledge of the 3D geometry of solid objantslighting, we can relate small variations in
underlying physical and geometric factors (such as pasitidentation, lighting of an object) with changes
in pixel intensities for all the pixels in an image. We cak#efactors of variatiorbecause they are different
aspects of the data that can vary separately and often indep#y. In this case, explicit knowledge of
the physical factors involved allows one to get a picturehef inathematical form of these dependencies,
and of the shape of the set of images (as points in a high-diimieal space of pixel intensities) associated
with the same 3D obiject. If a machine captured the factotsetkiaain the statistical variations in the data,
and how they interact to generate the kind of data we obsemeyould be able to say that the machine
understandshose aspects of the world covered by these factors of i@riat/nfortunately, in general and
for most factors of variation underlying natural images,deenot have an analytical understanding of these
factors of variation. We do not have enough formalized pkioowledge about the world to explain the
observed variety of images, even for such an apparentlylsiaigstraction abMAN, illustrated in Figure 1.

A high-level abstraction such &8AN has the property that it corresponds to a very large set cfilples
images, which might be very different from each other from ploint of view of simple Euclidean distance
in the space of pixel intensities. The set of images for witliet label could be appropriate forms a highly
convoluted region in pixel space that is not even necegsarbnnected region. THdAN category can be
seen as a high-level abstraction with respect to the spaceagies. What we call abstraction here can be a
category (such as thdAN category) or deature a function of sensory data, which can be discrete (thg.,
input sentence is at the past tense) or continuous (e.gthe input video shows an object moving at

2 meter/second). Many lower-level and intermediate-level concepts (Whie also call abstractions here)
would be useful to construct™AN -detector. Lower level abstractions are more directly teegarticular
percepts, whereas higher level ones are what we call “mastraath’ because their connection to actual
percepts is more remote, and through other, intermedéatd-hbstractions.

In addition to the difficulty of coming up with the appropeahtermediate abstractions, the number of
visual and semantic categories (suchMN ) that we would like an “intelligent” machine to capture is
rather large. The focus of deep architecture learning isitoraatically discover such abstractions, from the
lowest level features to the highest level concepts. Igead would like learning algorithms that enable
this discovery with as little human effort as possible,, ivéithout having to manually define all necessary
abstractions or having to provide a huge set of relevant falpeled examples. If these algorithms could
tap into the huge resource of text and images on the web, ilda@utainly help to transfer much of human
knowledge into machine-interpretable form.

1.1 How do We Train Deep Architectures?

Deep learning methods aim at learning feature hierarchitbsfeatures from higher levels of the hierarchy
formed by the composition of lower level features. Autorcaty learning features at multiple levels of
abstraction allows a system to learn complex functions nmgpiine input to the output directly from data,
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Figure 1: We would like the raw inputimage to be transformmed gradually higher levels of representation,

representing more and more abstract functions of the rawtjrgg., edges, local shapes, object parts,
etc. In practice, we do not know in advance what the “righffresentation should be for all these levels
of abstractions, although linguistic concepts might halpgsing what the higher levels should implicitly

represent.



without depending completely on human-crafted featurdds i6 especially important for higher-level ab-
stractions, which humans often do not know how to specifylieitly in terms of raw sensory input. The
ability to automatically learn powerful features will beae increasingly important as the amount of data
and range of applications to machine learning methodsmoasito grow.

Depth of architectureefers to the number of levels of composition of non-lingaemtions in the func-
tion learned. Whereas most current learning algorithmsespond teshallow architecture§l, 2 or 3 levels),
the mammal brain is organized irdaep architectur¢Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio,
2007) with a given input percept represented at multiplelewof abstraction, each level corresponding to
a different area of cortex. Humans often describe such g@isde hierarchical ways, with multiple levels
of abstraction. The brain also appears to process infoom#trough multiple stages of transformation and
representation. This is particularly clear in the primatial system (Serre et al., 2007), with its sequence
of processing stages: detection of edges, primitive shapelsmoving up to gradually more complex visual
shapes.

Inspired by the architectural depth of the brain, neuralvoek researchers had wanted for decades to
train deep multi-layer neural networks (Utgoff & Stracy2002; Bengio & LeCun, 2007), but no success-
ful attempts were reported before 2008esearchers reported positive experimental results tyfifcally
two or three levels (i.e. one or two hidden layers), but iragjrdeeper networks consistently yielded poorer
results. Something that can be considerdatemkthroughhappened in 2006: Hinton and collaborators at
U. of Toronto introduced Deep Belief Networks or DBNs for ghlinton, Osindero, & Teh, 2006), with
a learning algorithm that greedily trains one layer at a fimeloiting an unsupervised learning algorithm
for each layer, a Restricted Boltzmann Machine (RBM) (Foe@&Haussler, 1994). Shortly after, related
algorithms based on auto-encoders were proposed (Bengmblin, Popovici, & Larochelle, 2007; Ran-
zato, Poultney, Chopra, & LeCun, 2007), apparently exiplgithe same principleguiding the training of
intermediate levels of representation using unsupendisaching, which can be performed locally at each
level Other algorithms for deep architectures were proposec menently that exploit neither RBMs nor
auto-encoders and that exploit the same principle (WeRatig, & Collobert, 2008; Mobahi, Collobert, &
Weston, 2009) (see Section 4).

Since 2006, deep networks have been applied with successlydh classification tasks (Bengio et al.,
2007; Ranzato et al., 2007; Larochelle, Erhan, CourvillergBtra, & Bengio, 2007; Ranzato, Boureau, &
LeCun, 2008; Vincent, Larochelle, Bengio, & Manzagol, 208Bmed, Yu, Xu, Gong, & Xing, 2008; Lee,
Grosse, Ranganath, & Ng, 2009), but also in regressionKBaldinov & Hinton, 2008), dimensionality re-
duction (Hinton & Salakhutdinov, 2006a; Salakhutdinov &nkin, 2007a), modeling textures (Osindero &
Hinton, 2008), modeling motion (Taylor, Hinton, & Rowei€)(7; Taylor & Hinton, 2009), object segmen-
tation (Levner, 2008), information retrieval (Salakhuiol' & Hinton, 2007b; Ranzato & Szummer, 2008;
Torralba, Fergus, & Weiss, 2008), robotics (Hadsell, Efksermanet, Scoffier, Muller, & LeCun, 2008),
natural language processing (Collobert & Weston, 2008;tdvest al., 2008; Mnih & Hinton, 2009), and
collaborative filtering (Salakhutdinov, Mnih, & Hinton, @®). Although auto-encoders, RBMs and DBNs
can be trained with unlabeled data, in many of the above egipiins, they have been successfully used to
initialize deepsupervisedeedforward neural networks applied to a specific task.

1.2 Intermediate Representations: Sharing Features and Adiractions Across Tasks

Since a deep architecture can be seen as the compositionetiea ef processing stages, the immediate
guestion that deep architectures raise is: what kind ofsgrtation of the data should be found as the out-
put of each stage (i.e., the input of another)? What kindtefface should there be between these stages? A
hallmark of recent research on deep architectures is thesfoe these intermediate representations: the suc-
cess of deep architectures belongs to the representatiamseld in an unsupervised way by RBMs (Hinton
et al., 2006), ordinary auto-encoders (Bengio et al., 2pgrse auto-encoders (Ranzato et al., 2007, 2008),
or denoising auto-encoders (Vincent et al., 2008). Thegaridhms (described in more detail in Section 7.2)

1Except for neural networks with a special structure call@avolutional networks, discussed in Section 4.5.



can be seen as learning to transform one representationtpat of the previous stage) into another, at

each step maybe disentangling better the factors of vamisitinderlying the data. As we discuss at length
in Section 4, it has been observed again and again that oneedargpresentation has been found at each
level, it can be used to initialize and successfully traireamneural network by supervised gradient-based
optimization.

Each level of abstraction found in the brain consists of thetivation” (neural excitation) of a small
subset of a large number of features that are, in generainotially exclusive. Because these features
are not mutually exclusive, they form what is calledistributed representatio(Hinton, 1986; Rumelhart,
Hinton, & Williams, 1986b): the information is not localiden a particular neuron but distributed across
many. In addition to being distributed, it appears that trerbuses a representation thasggarse only
around 1-4% of the neurons are active together at a given(fteell & Laughlin, 2001; Lennie, 2003).
Section 3.2 introduces the notion of sparse distributedeggmtation and 7.1 describes in more detail the
machine learning approaches, some inspired by the obsmrsaif the sparse representations in the brain,
that have been used to build deep architectures with spgpsesentations.

Whereas dense distributed representations are one extfeargpectrum, and sparse representations are
in the middle of that spectrum, purely local representatiane the other extreme. Locality of representation
is intimately connected with the notion lofcal generalizationMany existing machine learning methods are
local in input spaceto obtain a learned function that behaves differently ffedént regions of data-space,
they require different tunable parameters for each of theg®ns (see more in Section 3.1). Even though
statistical efficiency is not necessarily poor when the nend tunable parameters is large, good general-
ization can be obtained only when adding some form of prigy. (fhat smaller values of the parameters are
preferred). When that prior is not task-specific, it is oftere that forces the solution to be very smooth, as
discussed at the end of Section 3.1. In contrast to learnethoads based on local generalization, the total
number of patterns that can be distinguished using a disérbrepresentation scales possibly exponentially
with the dimension of the representation (i.e. the numbégarihed features).

In many machine vision systems, learning algorithms haemn lienited to specific parts of such a pro-
cessing chain. The rest of the design remains labor-intenaihich might limit the scale of such systems.
On the other hand, a hallmark of what we would consider iigetit machines includes a large enough reper-
toire of concepts. RecognizingAN is not enough. We need algorithms that can tackle a very segef
such tasks and concepts. It seems daunting to manually definemany tasks, and learning becomes essen-
tial in this context. Furthermore, it would seem foolish twéxploit the underlying commonalities between
these tasks and between the concepts they require. Thigebaghe focus of research amulti-task learn-
ing (Caruana, 1993; Baxter, 1995; Intrator & Edelman, 1996.unhi996; Baxter, 1997). Architectures
with multiple levels naturally provide such sharing anduse of components: the low-level visual features
(like edge detectors) and intermediate-level visual festlike object parts) that are useful to det&d&N
are also useful for a large group of other visual tasks. Deaming algorithms are based on learning inter-
mediate representations which can be shared across taskse lthey can leverage unsupervised data and
data from similar tasks (Raina, Battle, Lee, Packer, & Nd)7)@o boost performance on large and chal-
lenging problems that routinely suffer from a poverty ofdded data, as has been shown by Collobert and
Weston (2008), beating the state-of-the-art in severailrabfanguage processing tasks. A similar multi-task
approach for deep architectures was applied in vision thgkShmed et al. (2008). Consider a multi-task
setting in which there are different outputs for differeaks, all obtained from a shared pool of high-level
features. The fact that many of these learned features aredlamongn tasks provides sharing of sta-
tistical strength in proportion te:. Now consider that these learned high-level features camglelves be
represented by combining lower-level intermediate festdirom a common pool. Again statistical strength
can be gained in a similar way, and this strategy can be drglfor every level of a deep architecture.

In addition, learning about a large set of interrelated epitg might provide a key to the kind of broad
generalizations that humans appear able to do, which wedamatl expect from separately trained object
detectors, with one detector per visual category. If eaghevel category is itself represented through
a particular distributed configuration of abstract feasuirem a common pool, generalization to unseen



categories could follow naturally from new configuratiofishese features. Even though only some config-
urations of these features would be present in the trainiagles, if they represent different aspects of the
data, new examples could meaningfully be represented bycoafigurations of these features.

1.3 Desiderata for Learning Al

Summarizing some of the above issues, and trying to put timethe broader perspective of Al, we put
forward a number of requirements we believe to be importamiearning algorithms to approach Al, many
of which motivate the research described here:

¢ Ability to learn complex, highly-varying functions, i.evjith a number of variations much greater than
the number of training examples.

o Ability to learn with little human input the low-level, intmediate, and high-level abstractions that
would be useful to represent the kind of complex functioredeel for Al tasks.

e Ability to learn from a very large set of examples: computattime for training should scale well
with the number of examples, i.e. close to linearly.

¢ Ability to learn from mostly unlabeled data, i.e. to work lretsemi-supervised setting, where not all
the examples come with complete and correct semantic labels

o Ability to exploit the synergies present across a large nematbtasks, i.e. multi-task learning. These
synergies exist because all the Al tasks provide differesws on the same underlying reality.

e Strongunsupervised learnin@.e. capturing most of the statistical structure in theesbed data),
which seems essential in the limit of a large number of tasikbkvahen future tasks are not known
ahead of time.

Other elements are equally important but are not directlynegted to the material in this paper. They
include the ability to learn to represent context of varyleggth and structure (Pollack, 1990), so as to
allow machines to operate in a context-dependent strearhs@reations and produce a stream of actions,
the ability to make decisions when actions influence theréuabservations and future rewards (Sutton &
Barto, 1998), and the ability to influence future observatiso as to collect more relevant information about
the world, i.e. a form of active learning (Cohn, Ghahramé&nlprdan, 1995).

1.4 Outline of the Paper

Section 2 reviews theoretical results (which can be skipgétbut hurting the understanding of the remain-
der) showing that an architecture with insufficient depth oequire many more computational elements,
potentially exponentially more (with respect to input 3jzban architectures whose depth is matched to the
task. We claim that insufficient depth can be detrimentaldarning. Indeed, if a solution to the task is
represented with a very large but shallow architecturen(wiatny computational elements), a lot of training
examples might be needed to tune each of these elements@ndeca highly-varying function. Section 3.1
is also meant to motivate the reader, this time to highligbtlimitations of local generalization and local
estimation, which we expect to avoid using deep architestwith a distributed representation (Section 3.2).
In later sections, the paper describes and analyzes soime alfforithms that have been proposed to train
deep architectures. Section 4 introduces concepts frometeal networks literature relevant to the task of
training deep architectures. We first consider the prewuiliifisulties in training neural networks with many
layers, and then introduce unsupervised learning alguostthat could be exploited to initialize deep neural
networks. Many of these algorithms (including those forRRgM) are related to thauto-encodera simple
unsupervised algorithm for learning a one-layer model tweputes a distributed representation for its
input (Rumelhart et al., 1986b; Bourlard & Kamp, 1988; Hm&Zemel, 1994). To fully understand RBMs



and many related unsupervised learning algorithms, Seétiatroduces the class of energy-based models,
including those used to build generative models with hiddamnables such as the Boltzmann Machine.
Section 6 focus on the greedy layer-wise training algorgtior Deep Belief Networks (DBNs) (Hinton

et al., 2006) and Stacked Auto-Encoders (Bengio et al., 2B@rzato et al., 2007; Vincent et al., 2008).
Section 7 discusses variants of RBMs and auto-encoderhévat been recently proposed to extend and
improve them, including the use of sparsity, and the modedfrtemporal dependencies. Section 8 discusses
algorithms for jointly training all the layers of a Deep BxINetwork using variational bounds. Finally, we
consider in Section 9 forward looking questions such as fpothesized difficult optimization problem
involved in training deep architectures. In particular,feow up on the hypothesis that part of the success
of current learning strategies for deep architectures imeoted to the optimization of lower layers. We
discuss the principle of continuation methods, which minergradually less smooth versions of the desired
cost function, to make a dent in the optimization of deepisctures.

2 Theoretical Advantages of Deep Architectures

In this section, we present a motivating argument for thdysaf learning algorithms for deep architectures,
by way of theoretical results revealing potential limiteis of architectures with insufficient depth. This part
of the paper (this section and the next) motivates the dtyos described in the later sections, and can be
skipped without making the remainder difficult to follow.

The main point of this section is that some functions caneafficiently represented (in terms of number
of tunable elements) by architectures that are too shalltvse results suggest that it would be worthwhile
to explore learning algorithms for deep architectures,clwhinight be able to represent some functions
otherwise not efficiently representable. Where simplersdnadiower architectures fail to efficiently represent
(and hence to learn) a task of interest, we can hope for legaigorithms that could set the parameters of a
deep architecture for this task.

We say that the expression of a functiorc@mpactwhen it has few computational elements, i.e. few
degrees of freedom that need to be tuned by learning. So fadfiumber of training examples, and short of
other sources of knowledge injected in the learning algorjtwe would expect that compact representations
of the target functiohwould yield better generalization.

More precisely, functions that can be compactly represebyea depthi: architecture might require an
exponential number of computational elements to be reptedéy a depttk — 1 architecture. Since the
number of computational elements one can afford dependseonumber of training examples available to
tune or select them, the consequences are not just congnakbut also statistical: poor generalization may
be expected when using an insufficiently deep architectureepresenting some functions.

We consider the case of fixed-dimension inputs, where thepotetion performed by the machine can
be represented by a directed acyclic graph where each nofterme a computation that is the application
of a function on its inputs, each of which is the output of &eothode in the graph or one of the external
inputs to the graph. The whole graph can be viewed escait that computes a function applied to the
external inputs. When the set of functions allowed for thepaotation nodes is limited timgic gates such
as{ AND, OR, NOT}, this is a Boolean circuit, dogic circuit.

To formalize the notion of depth of architecture, one musbithuce the notion of aet of computational
elementsAn example of such a set is the set of computations that caetiermed logic gates. Another is
the set of computations that can be performed by an artifigiaton (depending on the values of its synaptic
weights). A function can be expressed by the compositioroafputational elements from a given set. It
is defined by a graph which formalizes this composition, weitie node per computational element. Depth
of architecture refers to the depth of that graph, i.e. tingést path from an input node to an output node.
When the set of computational elements is the set of conmipataan artificial neuron can perform, depth
corresponds to the number of layers in a neural network. setplore the notion of depth with examples

2The target function is the function that we would like thertesa to discover.
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Figure 2: Examples of functions represented by a graph opcoations, where each node is taken in some
“element set” of allowed computations. Left: the elemen¢gga, +, —, sin}UR. The architecture computes
xxsin(axz+b) and has depth 4. Right: the elements are artificial neurampuatngf (x) = tanh(b+w’'x);
each element in the set has a differéwt b) parameter. The architecture is a multi-layer neural netvadr
depth 3.

of architectures of different depths. Consider the funtfi¢x) = x * sin(a * « + b). It can be expressed
as the composition of simple operations such as additidtraction, multiplication, and th€n operation,
as illustrated in Figure 2. In the example, there would befferdint node for the multiplication * = and
for the final multiplication byx. Each node in the graph is associated with an output valusraat by
applying some function on input values that are the outplutdher nodes of the graph. For example, in a
logic circuit each node can compute a Boolean function tdf@n a small set of Boolean functions. The
graph as a whole has input nodes and output nodes and comnagdutedion from input to output. Theepth

of an architecture is the maximum length of a path from anwyirgf the graph to any output of the graph,
i.e. 4inthe case of * sin(a * z + b) in Figure 2.

¢ If we include affine operations and their possible compositvith sigmoids in the set of computa-
tional elements, linear regression and logistic regredsave depth 1, i.e., have a single level.

e When we put a fixed kernel computatidf(u, v) in the set of allowed operations, along with affine
operations, kernel machines (Scholkopf, Burges, & Sni#&89a) with a fixed kernel can be consid-
ered to have two levels. The first level has one element canpii(x, x;) for each prototype; (a
selected representative training example) and matchésphévectorx with the prototypes;. The
second level performs an affine combination >, a; K (x, x;) to associate the matching prototypes
x; with the expected response.

e When we put artificial neurons (affine transformation follmhby a non-linearity) in our set of el-
ements, we obtain ordinary multi-layer neural networksr{Rlhart et al., 1986b). With the most
common choice of one hidden layer, they also have depth tveohidden layer and the output layer).

e Decision trees can also be seen as having two levels, asdetin Section 3.1.

e Boosting (Freund & Schapire, 1996) usually adds one levigbtbase learners: that level computes a
vote or linear combination of the outputs of the base leatner

e Stacking (Wolpert, 1992) is another meta-learning alganithat adds one level.

e Based on current knowledge of brain anatomy (Serre et 28720 appears that the cortex can be
seen as a deep architecture, with 5 to 10 levels just for thealsystem.



Although depth depends on the choice of the set of allowedpctations for each element, graphs
associated with one set can often be converted to graphsiaiezbwith another by an graph transformation
in a way that multiplies depth. Theoretical results suggfest it is not the absolute number of levels that
matters, but the number of levels relative to how many areired to represent efficiently the target function
(with some choice of set of computational elements).

2.1 Computational Complexity

The most formal arguments about the power of deep archiescttome from investigations into computa-
tional complexity of circuits. The basic conclusion thatdh results suggest is thwlhen a function can be
compactly represented by a deep architecture, it might r@eeery large architecture to be represented by
an insufficiently deep one

A two-layer circuit of logic gates can represent any Boolkarttion (Mendelson, 1997). Any Boolean
function can be written as a sum of products (disjunctivarrarform: AND gates on the first layer with
optional negation of inputs, and OR gate on the second layea) product of sums (conjunctive normal
form: OR gates on the first layer with optional negation ofuty) and AND gate on the second layer).
To understand the limitations of shallow architectures, filhst result to consider is that with depth-two
logical circuits, most Boolean functions require@ponentialwith respect to input size) number of logic
gates (Wegener, 1987) to be represented.

More interestingly, there are functions computable witltolypomial-size logic gates circuit of depkh
that require exponential size when restricted to dépthl (Hastad, 1986). The proof of this theorem relies
on earlier results (Yao, 1985) showing thibit parity circuits of depth 2 have exponential siZEhe d-bit
parity functionis defined as usual:

1if Y% b, iseven

o d
parity : (b1,...,bq) € {0,1}¢ — { 0 othenmise.

One might wonder whether these computational complexgylte for Boolean circuits are relevant to
machine learning. See Orponen (1994) for an early surveyemiretical results in computational complexity
relevant to learning algorithms. Interestingly, many & tesults for Boolean circuits can be generalized to
architectures whose computational elementdiaear thresholdunits (also known as artificial neurons (Mc-
Culloch & Pitts, 1943)), which compute

f(x) = Lwx+b>0 (1)

with parametersv andb. Thefan-in of a circuit is the maximum number of inputs of a particulamaént.
Circuits are often organized in layers, like multi-layeured networks, where elements in a layer only take
their input from elements in the previous layer(s), and tret fayer is the neural network input. Tezeof
a circuit is the number of its computational elements (ediclg input elements, which do not perform any
computation).

Of particular interest is the following theorem, which a@pplto monotone weighted threshold circuits
(i.e. multi-layer neural networks with linear thresholdtsrand positive weights) when trying to represent a
function compactly representable with a depttircuit:

Theorem 2.1. A monotone weighted threshold circuit of depth- 1 computing a functiorf, € Fj, y has
size at lease" for some constant > 0 and N > N, (Hastad & Goldmann, 1991).

The class of functionsy, v is defined as follows. It contains functions wil¥i**—2 inputs, defined by a
depthk circuit that is a tree. At the leaves of the tree there are gateel input variables, and the function
value is at the root. Theth level from the bottom consists of AND gates whias even and OR gates when
i is odd. The fan-in at the top and bottom leveNsand at all other levels it i&/2.

The above results do not prove that other classes of fure(grch as those we want to learn to perform
Al tasks) require deep architectures, nor that these detnawed limitations apply to other types of circuits.



However, these theoretical results beg the question: arddpth 1, 2 and 3 architectures (typically found
in most machine learning algorithms) too shallow to repmeséiciently more complicated functions of the
kind needed for Al tasks? Results such as the above theosersadigest thahere might be no universally
right depth each function (i.e. each task) might require a particularimmum depth (for a given set of
computational elements). We should therefore strive teldgvlearning algorithms that use the data to
determine the depth of the final architecture. Note alsorbatrsive computation defines a computation
graph whose depth increases linearly with the number aftitans.

(x122)(X2X3) + (z122)(x324) + (X2X3)2 + (x2x3)(324)

Figure 3: Example of polynomial circuit (with products ondoldyers and sums on even ones) illustrating
the factorization enjoyed by a deep architecture. For eXathe level-1 producksxs would occur many
times (exponential in depth) in a depth 2 (sum of productpespon of the above polynomial.

2.2 Informal Arguments

Depth of architecture is connected to the notion of highdyying functions. We argue that, in general, deep
architectures can compactly represent highly-varyingfions which would otherwise require a very large
size to be represented with an inappropriate architectwe.say that a function ikighly-varyingwhen

a piecewise approximation (e.g., piecewise-constant@gepvise-linear) of that function would require a
large number of pieces. A deep architecture is a compogifionany operations, and it could in any case
be represented by a possibly very large depth-2 archiectlihe composition of computational units in
a small but deep circuit can actually be seen as an efficiaatdfization” of a large but shallow circuit.
Reorganizing the way in which computational units are cosepiacan have a drastic effect on the efficiency
of representation size. For example, imagine a d@gthepresentation of polynomials where odd layers
implement products and even layers implement sums. Thiistacture can be seen as a particularly efficient
factorization, which when expanded into a depth 2 architecsuch as a sum of products, might require a
huge number of terms in the sum: consider a level 1 produa dixs in Figure 3) from the deptBk
architecture. It could occur many times as a factor in manyseof the depth 2 architecture. One can see
in this example that deep architectures can be advantagfesame computations (e.g. at one level) can
be shared (when considering the expanded depth 2 exprgsBidihat case, the overall expression to be
represented can be factored out, i.e., represented mongembi;mwith a deep architecture.

Further examples suggesting greater expressive poweregf aiehitectures and their potential for Al
and machine learning are also discussed by Bengio and LeZD@Y). An earlier discussion of the ex-
pected advantages of deeper architectures in a more aagpéispective is found in Utgoff and Stracuzzi
(2002). Note that connectionist cognitive psychologisteéehbeen studying for long time the idea of neu-
ral computation organized with a hierarchy of levels of esggntation corresponding to different levels of
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abstraction, with a distributed representation at eachl igvcClelland & Rumelhart, 1981; Hinton & An-
derson, 1981; Rumelhart, McClelland, & the PDP Researchugrb986a; McClelland, Rumelhart, & the
PDP Research Group, 1986; Hinton, 1986; McClelland & Rumar¢]li1988). The modern deep architecture
approaches discussed here owe a lot to these early devaltgpribese concepts were introduced in cogni-
tive psychology (and then in computer science / Al) in ordemtplain phenomena that were not as naturally
captured by earlier cognitive models, and also to connecttignitive explanation with the computational
characteristics of the neural substrate.

To conclude, a number of computational complexity resufengly suggest that functions that can be
compactly represented with a deptlarchitecture could require a very large number of elementsder to
be represented by a shallower architecture. Since eaclepterhthe architecture might have to be selected,
i.e., learned, using examples, these results suggest epét of architecture can be very important from
the point of view of statistical efficiency. This notion iswédoped further in the next section, discussing a
related weakness of many shallow architectures assodigtiedon-parametric learning algorithms: locality
in input space of the estimator.

3 Local vsNon-Local Generalization

3.1 The Limits of Matching Local Templates

How can a learning algorithm compactly represent a “conapdid” function of the input, i.e., one that has
many more variations than the number of available trainkaggples? This question is both connected to the
depth question and to the question of locality of estimatéfs argue that local estimators are inappropriate
to learn highly-varying functions, even though they canepttilly be represented efficiently with deep
architectures. An estimator thatliscal in input spaceobtains good generalization for a new inpuby
mostly exploiting training examples in the neighborhoodkof For example, thé& nearest neighbors of
the test pointk, among the training examples, vote for the predictios.at.ocal estimators implicitly or
explicitly partition the input space in regions (possibiya soft rather than hard way) and require different
parameters or degrees of freedom to account for the possillge of the target function in each of the
regions. When many regions are necessary because theofuischighly varying, the number of required
parameters will also be large, and thus the number of exanmgleded to achieve good generalization.

The local generalization issue is directly connected tditeeature on thecurse of dimensionalifybut
the results we cite show thathat matters for generalization is not dimensionality, instead the number
of “variations” of the function we wish to obtain after leanmyg. For example, if the function represented
by the model is piecewise-constant (e.g. decision trebs)) the question that matters is the number of
pieces required to approximate properly the target functithere are connections between the number of
variations and the input dimension: one can readily desigrilfes of target functions for which the number
of variations is exponential in the input dimension, suckhasparity function withd inputs.

Architectures based on matching local templates can begtitaf as having two levels. The first level
is made of a set of templates which can be matched to the idptemplate unit will output a value that
indicates the degree of matching. The second level combives® values, typically with a simple linear
combination (an OR-like operation), in order to estimate desired output. One can think of this linear
combination as performing a kind of interpolation in ordeptoduce an answer in the region of input space
that is between the templates.

The prototypical example of architectures based on madchical templates is thé&ernel ma-
chine(Scholkopf et al., 1999a)

flx)= b—i—ZaiK(x,xi), 2)
whereb and«; form the second level, while on the first level, tkernel functionk (x, x;) matches the
input x to the training exampl&; (the sum runs over some or all of the input patterns in thaitrgiset).
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In the above equatiorf,(x) could be for example the discriminant function of a classifie the output of a
regression predictor.

A kernel islocal when K (x,x;) > p is true only forx in some connected region arourd(for some
thresholdp). The size of that region can usually be controlled by a hyga@ameter of the kernel function.
An example of local kernel is the Gaussian kerfgl, x;) = e~!Ix=xill’/* wheres controls the size of
the region around;. We can see the Gaussian kernel as computing a soft corgunbicause it can be
written as a product of one-dimensional conditioAgu, v) = []. e~ (% =v)*/* If |u; — v,| /o is small
for all dimensiongj, then the pattern matches af(u, v) is large. Iflu; — v;|/o is large for a singlg,
then there is no match ardd(u, v) is small.

Well-known examples of kernel machines include Supportafeiglachines (SVMs) (Boser, Guyon, &
Vapnik, 1992; Cortes & Vapnik, 1995) and Gaussian proce®¥#ams & Rasmussen, 19968)or classifi-
cation and regression, but also classical non-parame#iaing algorithms for classification, regression and
density estimation, such as thenearest neighbor algorithm, Nadaraya-Watson or Parzedoms density
and regression estimators, etc. Below, we disaussifold learning algorithmsuch as Isomap and LLE that
can also be seen as local kernel machines, as well as retatedapervised learning algorithms also based
on the construction of aeighborhood graplfwith one node per example and arcs between neighboring
examples).

Kernel machines with a local kernel yield generalizatiorelgploiting what could be called tremooth-
ness prior the assumption that the target function is smooth or can ddeapproximated with a smooth
function. For example, in supervised learning, if we haetthining exampléx;, y;), then it makes sense
to construct a predictof(x) which will output something close tg; whenx is close tox;. Note how this
prior requires defining a notion of proximity in input spackhis is a useful prior, but one of the claims
made in Bengio, Delalleau, and Le Roux (2006) and Bengio a@un (2007) is that such a prior is often
insufficient to generalize when the target function is hygbdrying in input space.

The limitations of a fixed generic kernel such as the Gaudstamel have motivated a lot of research in
designing kernelbased on prior knowledge about the task (Jaakkola & Hayd®é@8; Scholkopf, Mika,
Burges, Knirsch, Muller, Ratsch, & Smola, 1999b; Gart2€03; Cortes, Haffner, & Mohri, 2004). How-
ever, if we lack sufficient prior knowledge for designing qpeopriate kernel, can we learn it? This question
also motivated much research (Lanckriet, Cristianini,tB#r El Gahoui, & Jordan, 2002; Wang & Chan,
2002; Cristianini, Shawe-Taylor, Elisseeff, & Kandola,02), and deep architectures can be viewed as a
promising development in this direction. It has been shdwat & Gaussian Process kernel machine can
be improved using a Deep Belief Network to learn a featuresg8alakhutdinov & Hinton, 2008): after
training the Deep Belief Network, its parameters are useditialize a deterministic non-linear transfor-
mation (a multi-layer neural network) that computes a femtector (a new feature space for the data), and
that transformation can be tuned to minimize the predicimoer made by the Gaussian process, using a
gradient-based optimization. The feature space can beaseariearned representation of the data. Good
representations bring close to each other examples whante stostract characteristics that are relevant fac-
tors of variation of the data distribution. Learning algloms for deep architectures can be seen as ways to
learn a good feature space for kernel machines.

Consider one directionr in which a target functiorf (what the learner should ideally capture) goes
up and down (i.e. as increases,f(x + av) — b crosses 0, becomes positive, then negative, positive,
then negative, etc.), in a series of “bumps”. Following Sith(®2002), Bengio et al. (2006), Bengio and
LeCun (2007) show that for kernel machines with a Gaussianekethe required number of examples
grows linearly with the number of bumps in the target functio be learned. They also show that for a
maximally varying function such as the parity function, thenber of examples necessary to achieve some
error rate with a Gaussian kernel machinedponential in the input dimensioRor a learner that only relies
on the prior that the target function is locally smooth (e€3aussian kernel machines), learning a function
with many sign changes in one direction is fundamentallfiadift (requiring a large VC-dimension, and a

3In the Gaussian Process case, as in kernel regregiiaijn eq. 2 is the conditional expectation of the target vagabtto predict,
given the inputx.
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correspondingly large number of examples). However, iegroould work with other classes of functions
in which the pattern of variations is captured compactlyi(@el example is when the variations are periodic
and the class of functions includes periodic functions #ipgtroximately match).

For complex tasks in high dimension, the complexity of theislen surface could quickly make learning
impractical when using a local kernel method. It could alsealgued that if the curve has many variations
and these variations are not related to each other throughdarlying regularity, then no learning algorithm
will do much better than estimators that are local in inpwtcgp However, it might be worth looking for
more compact representations of these variations, bedaarsecould be found, it would be likely to lead to
better generalization, especially for variations not sedhe training set. Of course this could only happen
if there were underlying regularities to be captured in Hrgét function; we expect this property to hold in
Al tasks.

Estimators that are local in input space are found not orgypervised learning algorithms such as those
discussed above, but also in unsupervised and semi-sapdrigarning algorithms, e.g. Locally Linear
Embedding (Roweis & Saul, 2000), Isomap (Tenenbaum, de SévLangford, 2000), kernel Principal
Component Analysis (Scholkopf, Smola, & Muller, 1998) kernel PCA) Laplacian Eigenmaps (Belkin &
Niyogi, 2003), Manifold Charting (Brand, 2003), spectrhistering algorithms (Weiss, 1999), and kernel-
based non-parametric semi-supervised algorithms (Zhah@mani, & Lafferty, 2003; Zhou, Bousquet,
Navin Lal, Weston, & Scholkopf, 2004; Belkin, Matveeva, &Mgi, 2004; Delalleau, Bengio, & Le Roux,
2005). Most of these unsupervised and semi-supervisedthigs rely on theneighborhood grapha graph
with one node per example and arcs between near neighbdistilse algorithms, one can get a geometric
intuition of what they are doing, as well as how being locdinestors can hinder them. This is illustrated
with the example in Figure 4 in the case of manifold learnidgre again, it was found that in order to cover
the many possible variations in the function to be learned,meeds a number of examples proportional to
the number of variations to be covered (Bengio, Monperrusa&chelle, 2006).

4

raw input vector space

Figure 4: The set of images associated with the same objas$ ébrms a manifold or a set of disjoint
manifolds, i.e. regions of lower dimension than the origspmace of images. By rotating or shrinking, e.g.,
a digit 4, we get other images of the same class, i.e. on the saamifold. Since the manifold is locally
smooth, it can in principle be approximated locally by linpatches, each being tangent to the manifold.
Unfortunately, if the manifold is highly curved, the patstare required to be small, and exponentially many
might be needed with respect to manifold dimension. Grapbigusly provided by Pascal Vincent.

Finally let us consider the case of semi-supervised legraigorithms based on the neighborhood
graph (Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2(Ddlalleau et al., 2005). These algorithms
partition the neighborhood graph in regions of constangllali can be shown that the number of regions
with constant label cannot be greater than the number ofddlexamples (Bengio et al., 2006). Hence one
needs at least as many labeled examples as there are vegiatimterest for the classification. This can be
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prohibitive if the decision surface of interest has a vergdéanumber of variations.

Decision trees (Breiman, Friedman, Olshen, & Stone, 1982 pmong the best studied learning algo-
rithms. Because they can focus on specific subsets of inpigthles, at first blush they seem non-local.
However, they are also local estimators in the sense ofnglgn a partition of the input space and using
separate parameters for each region (Bengio, Delalleaum&r8, 2009), with each region associated with
a leaf of the decision tree. This means that they also suffen the limitation discussed above for other
non-parametric learning algorithms: they need at least asyntraining examples as there are variations
of interest in the target function, and they cannot geregald new variations not covered in the training
set. Theoretical analysis (Bengio et al., 2009) shows fipetasses of functions for which the number of
training examples necessary to achieve a given error rat@isnential in the input dimension. This analysis
is built along lines similar to ideas exploited previousitihe computational complexity literature (Cucker
& Grigoriev, 1999). These results are also in line with poexd empirical results (Pérez & Rendell, 1996;
Vilalta, Blix, & Rendell, 1997) showing that the generatiba performance of decision trees degrades when
the number of variations in the target function increases.

Ensembles of trees (like boosted trees (Freund & Schap®@6)]l and forests (Ho, 1995; Breiman,
2001)) are more powerful than a single tree. They add a teidlIto the architecture which allows the
model to discriminate among a number of regierponential in the number of parametéBengio et al.,
2009). Asiillustrated in Figure 5, they implicitly formdastributed representatiofa notion discussed further
in Section 3.2) with the output of all the trees in the for&sich tree in an ensemble can be associated with
a discrete symbol identifying the leaf/region in which tigut example falls for that tree. The identity
of the leaf node in which the input pattern is associated &mhetree forms a tuple that is a very rich
description of the input pattern: it can represent a veigdaumber of possible patterns, because the number
of intersections of the leaf regions associated withrilieees can be exponentialin

3.2 Learning Distributed Representations

In Section 1.2, we argued that deep architectures call f&imgachoices about the kind of representation
at the interface between levels of the system, and we intedithe basic notion of local representation
(discussed further in the previous section), of distridutepresentation, and of sparse distributed repre-
sentation. The idea of distributed representation is arid#d in machine learning and neural networks
research (Hinton, 1986; Rumelhart et al., 1986a; Miikkudai & Dyer, 1991; Bengio, Ducharme, & Vin-
cent, 2001; Schwenk & Gauvain, 2002), and it may be of helpeilidg with the curse of dimensionality
and the limitations of local generalization. A cartdonal representatioffor integers € {1,2,...,N}isa
vectorr(z) of NV bits with a single 1 andv — 1 zeros, i.e. withj-th element; (i) = 1,—;, called theone-hot
representation aof A distributed representation for the same integer could Yector oflog, N bits, which
is @ much more compact way to represenor the same number of possible configurations, a dis&tbut
representation can potentially be exponentially more @hihan a very local one. Introducing the notion
of sparsity(e.g. encouraging many units to take the value 0) allowsdprasentations that are in between
being fully local (i.e. maximally sparse) and non-sparse (dense) distributed representations. Neurons
in the cortex are believed to have a distributed and spapsesentation (Olshausen & Field, 1997), with
around 1-4% of the neurons active at any one time (Attwell &dfain, 2001; Lennie, 2003). In practice,
we often take advantage of representations which are eamsivalued, which increases their expressive
power. An example of continuous-valued local represesrtai one where theth element varies according
to some distance between the input and a prototype or regiotei; as with the Gaussian kernel discussed
in Section 3.1. In a distributed representation the inpttepais represented by a set of features that are not
mutually exclusive, and might even be statistically indegent. For example, clustering algorithms do not
build a distributed representation since the clusters sserdgially mutually exclusive, whereas Independent
Component Analysis (ICA) (Bell & Sejnowski, 1995; Pearlteni& Parra, 1996) and Principal Component
Analysis (PCA) (Hotelling, 1933) build a distributed repeatation.

Consider a discrete distributed representati¢t) for an input patterrx, wherer;(x) € {1,...M},
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Figure 5: Whereas a single decision tree (here just a 2-wditipa) can discriminate among a number of
regions linear in the number of parameters (leaves), amanseof trees Ieft) can discriminate among a
number of regions exponential in the number of trees, i.poegntial in the total number of parameters (at
least as long as the number of trees does not exceed the nafribputs, which is not quite the case here).
Each distinguishable region is associated with one of theele of each tree (here there are 3 2-way trees,
each defining 2 regions, for a total of 7 regions). This is eajent to a multi-clustering, here 3 clusterings
each associated with 2 regions. A binomial RBM with 3 hiddeitau(right) is a multi-clustering with 2
linearly separated regions per partition (each associatddone of the three binomial hidden units). A
multi-clustering is therefore a distributed representatf the input pattern.

i € {1,...,N}. Eachr;(x) can be seen as a classificationxoiinto M classes. As illustrated in Figure 5
(with M = 2), eachr;(x) partitions thex-space inM regions, but the different partitions can be combined
to give rise to a potentially exponential number of possibtersection regions ix-space, corresponding
to different configurations of (x). Note that when representing a particular input distrinutisome con-
figurations may be impossible because they are incompatiadeexample, in language modeling, a local
representation of a word could directly encode its ideftjtyan index in the vocabulary table, or equivalently
a one-hot code with as many entries as the vocabulary sizéh&uwther hand, a distributed representation
could represent the word by concatenating in one vectocatdis for syntactic features (e.g., distribution
over parts of speech it can have), morphological featuregcfwsuffix or prefix does it have?), and semantic
features (is it the name of a kind of animal? etc). Like in tugsg, we construct discrete classes, but the
potential number of combined classes is huge: we obtainwaagll amulti-clusteringand that is similar to
the idea of overlapping clusters and partial membershigi€H& Ghahramani, 2007; Heller, Williamson,
& Ghahramani, 2008) in the sense that cluster membersh#ascmutually exclusive. Whereas clustering
forms a single partition and generally involves a heavy @dssformation about the input, a multi-clustering
provides asetof separate partitions of the input space. Identifying Whiegion of each partition the input
example belongs to forms a description of the input pattdnickvmight be very rich, possibly not losing
any information. The tuple of symbols specifying which mgbf each partition the input belongs to can
be seen as a transformation of the input into a new space gwherstatistical structure of the data and the
factors of variation in it could be disentangled. This cep@nds to the kind of partition of-space that an
ensemble of trees can represent, as discussed in the ppe@ction. This is also what we would like a deep
architecture to capture, but with multiple levels of regm@sation, the higher levels being more abstract and
representing more complex regions of input space.

In the realm of supervised learning, multi-layer neurailveeks (Rumelhart et al., 1986a, 1986b) and in
the realm of unsupervised learning, Boltzmann machine&l&¢cHinton, & Sejnowski, 1985) have been
introduced with the goal of learning distributed internepresentations in the hidden layers. Unlike in
the linguistic example above, the objective is to let leagralgorithms discover the features that compose
the distributed representation. In a multi-layer neuraloek with more than one hidden layer, there are
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Figure 6: Multi-layer neural network, typically used in supised learning to make a prediction or classifica-
tion, through a series of layers, each of which combinesfareadperation and a non-linearity. Deterministic
transformations are computed in a feedforward way from ipeiiix, through the hidden layeis”®, to the
network outpuh’, which gets compared with a labgto obtain the los€.(h’, 3) to be minimized.

several representations, one at each layer. Learningpteuléivels of distributed representations involves a
challenging training problem, which we discuss next.

4 Neural Networks for Deep Architectures

4.1 Multi-Layer Neural Networks

A typical set of equations for multi-layer neural networkaelhart et al., 1986b) is the following. As
illustrated in Figure 6, layek computes an output vectd” using the outpuh®~! of the previous layer,
starting with the inpuk = h,

h" = tanh(b* + W* h*~1) ®)

with parameterd” (a vector of offsets) antl’* (a matrix of weights). Theanh is applied element-wise
and can be replaced Bigm(u) = 1/(1 4+ e~*) = 1(tanh(u) + 1) or other saturating non-linearities. The
top layer outpuh’ is used for making a prediction and is combined with a sugedtargey into a loss
function L(h’, y), typically convex inb® + 1W*h‘~!. The output layer might have a non-linearity different
from the one used in other layers, e.g., the softmax

. ePi+Wint!
h; = S PR
j e J J

(4)
whereW/ is thei-th row of W, h! is positive andy_, h{ = 1. The softmax outpuh{ can be used as
estimator of P(Y = i|x), with the interpretation thal” is the class associated with input patternin this
case one often uses the negative conditional log-liketinoth?, y) = —log P(Y = y|x) = — log hg asa
loss, whose expected value oy&t y) pairs is to be minimized.

4.2 The Challenge of Training Deep Neural Networks

After having motivated the need for deep architectures déinatnon-local estimators, we now turn to the
difficult problem of training them. Experimental evideneggests that training deep architectures is more
difficult than training shallow architectures (Bengio et @007; Erhan, Manzagol, Bengio, Bengio, & Vin-
cent, 2009).
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Until 2006, deep architectures have not been discussed intica machine learning literature, because
of poor training and generalization errors generally at®di(Bengio et al., 2007) using the standard random
initialization of the parameters. Note that demmvolutional neural networkd.eCun, Boser, Denker, Hen-
derson, Howard, Hubbard, & Jackel, 1989; Le Cun, Bottou,gder& Haffner, 1998; Simard, Steinkraus,
& Platt, 2003; Ranzato et al., 2007) were found easier toti@s discussed in Section 4.5, for reasons that
have yet to be really clarified.

Many unreported negative observations as well as the erpetal results in Bengio et al. (2007), Erhan
et al. (2009) suggest that gradient-based training of dapprsised multi-layer neural networks (starting
from random initialization) gets stuck in “apparent locahima or plateaus’, and that as the architecture
gets deeper, it becomes more difficult to obtain good geizetadn. When starting from random initializa-
tion, the solutions obtained with deeper neural networlgapto correspond to poor solutions that perform
worse than the solutions obtained for networks with 1 or 2laidlayers (Bengio et al., 2007; Larochelle,
Bengio, Louradour, & Lamblin, 2009). This happens even giok + 1-layer nets can easily represent
what ak-layer net can represent (without much added capacity)edsethe converse is not true. How-
ever, it was discovered (Hinton et al., 2006) that much be#sults could be achieved when pre-training
each layer with an unsupervised learning algorithm, onerlajter the other, starting with the first layer
(that directly takes in input the observe)l The initial experiments used the RBM generative model for
each layer (Hinton et al., 2006), and were followed by experits yielding similar results using variations
of auto-encoders for training each layer (Bengio et al.,720®anzato et al., 2007; Vincent et al., 2008).
Most of these papers exploit the idea of greedy layer-wismipervised learning (developed in more de-
tail in the next section): first train the lower layer with ansupervised learning algorithm (such as one
for the RBM or some auto-encoder), giving rise to an initietl af parameter values for the first layer of
a neural network. Then use the output of the first layer (a regwesentation for the raw input) as input
for another layer, and similarly initialize that layer wigim unsupervised learning algorithm. After having
thus initialized a number of layers, the whole neural neknsan be fine-tuned with respect to a supervised
training criterion as usual. The advantage of unsuperviseeraining versus random initialization was
clearly demonstrated in several statistical comparisBesgio et al., 2007; Larochelle et al., 2007, 2009;
Erhan et al., 2009). What principles might explain the inmgraent in classification error observed in the
literature when using unsupervised pre-training? One olag help to identify the principles behind the
success of some training algorithms for deep architectaresit comes from algorithms that exploit neither
RBMs nor auto-encoders (Weston et al., 2008; Mobahi et@09® What these algorithms have in common
with the training algorithms based on RBMs and auto-encoidéatyer-local unsupervised criterja.e., the
idea that injecting amnsupervised training signal at each laymay help to guide the parameters of that
layer towards better regions in parameter space. In Wedtah €008), the neural networks are trained
using pairs of examplef, x), which are either supposed to be “neighbors” (or of the saasyor not.
Considerh*(x) the level% representation of in the model. A local training criterion is defined at each
layer that pushes the intermediate representahdiig) andh” (%) either towards each other or away from
each other, according to whetheiandx are supposed to be neighbors or not (esgnearest neighbors in
input space). The same criterion had already been usedssfiglie to learn a low-dimensional embedding
with an unsupervised manifold learning algorithm (HadsgHopra, & LeCun, 2006) but is here (Weston
et al., 2008) applied at one or more intermediate layer oihigral network. Following the idea of slow
feature analysis (Wiskott & Sejnowski, 2002), Mobahi et(2009), Bergstra and Bengio (2010) exploit
the temporal constancy of high-level abstraction to prexad unsupervised guide to intermediate layers:
successive frames are likely to contain the same object.

Clearly, test errors can be significantly improved with thieshniques, at least for the types of tasks stud-
ied, but why? One basic question to ask is whether the impnemtis basically due to better optimization
or to better regularization. As discussed below, the ansmagr not fit the usual definition of optimization
and regularization.

4we call them apparent local minima in the sense that the gmadiescent learning trajectory is stuck there, which do¢gom-
pletely rule out that more powerful optimizers could not fgignificantly better solutions far from these.

17



In some experiments (Bengio et al., 2007; Larochelle e28i09) it is clear that one can get training
classification error down to zero even with a deep neural odtwthat has no unsupervised pre-training,
pointing more in the direction of a regularization effecanthan optimization effect. Experiments in Erhan
et al. (2009) also give evidence in the same direction: fersdume training error (at different points during
training), test error is systematically lower with unsupsed pre-training. As discussed in Erhan et al.
(2009), unsupervised pre-training can be seen as a forngofaezer (and prior): unsupervised pre-training
amounts to a constraint on the region in parameter spacesvelgslution is allowed. The constraint forces
solutions “near® ones that correspond to the unsupervised training, i.pefuly corresponding to solutions
capturing significant statistical structure in the inputh the other hand, other experiments (Bengio et al.,
2007; Larochelle et al., 2009) suggest that poor tuning®fdiver layers might be responsible for the worse
results without pre-training: when the top hidden layemisstrained (forced to be small) tdeep networks
with random initialization (no unsupervised pre-trainjrdp poorly on both training and test setand much
worse than pre-trained networks. In the experiments meeti@arlier where training error goes to zero, it
was always the case that the number of hidden units in eaeh (ayhyper-parameter) was allowed to be as
large as necessary (to minimize error on a validation sdig dxplanatory hypothesis proposed in Bengio
et al. (2007), Larochelle et al. (2009) is that when the tajdbn layer is unconstrained, the top two layers
(corresponding to a regular 1-hidden-layer neural netsafiicient to fit the training set, using as input the
representation computed by the lower layers, even if thatesentation is poor. On the other hand, with
unsupervised pre-training, the lower layers are ’betteéinuped’, and a smaller top layer suffices to get a
low training error but also yields better generalizatiorth€ experiments described in Erhan et al. (2009)
are also consistent with the explanation that with randorarpater initialization, the lower layers (closer to
the input layer) are poorly trained. These experiments ghaivthe effect of unsupervised pre-training is
most marked for the lower layers of a deep architecture.

We know from experience that a two-layer network (one hiddsgar) can be well trained in general, and
that from the point of view of the top two layers in a deep netythey form a shallow network whose input
is the output of the lower layers. Optimizing the last layEa deep neural network is a convex optimization
problem for the training criteria commonly used. Optimgitne last two layers, although not convex, is
known to be much easier than optimizing a deep network (ihviden the number of hidden units goes
to infinity, the training criterion of a two-layer networkrtéde cast as convex (Bengio, Le Roux, Vincent,
Delalleau, & Marcotte, 2006)).

If there are enough hidden units (i.e. enough capacity) enttip hidden layer, training error can be
brought very low even when the lower layers are not propealiynéd (as long as they preserve most of the
information about the raw input), but this may bring worsaemalization than shallow neural networks.
When training error is low and test error is high, we usuadlly the phenomenon overfitting. Since unsuper-
vised pre-training brings test error down, that would ptant as a kind of data-dependent regularizer. Other
strong evidence has been presented suggesting that unisepdeore-training acts like a regularizer (Erhan
et al., 2009): in particular, when there is not enough capaansupervised pre-training tends to hurt gener-
alization, and when the training set size is “small” (e.gNIgT, with less than hundred thousand examples),
although unsupervised pre-training brings improved tesirgit tends to produce larger training error.

On the other hand, for much larger training sets, with batigalization of the lower hidden layers, both
training and generalization error can be made significdotiyer when using unsupervised pre-training (see
Figure 7 and discussion below). We hypothesize that in atreithed deep neural network, the hidden layers
form a “good” representation of the data, which helps to ngd®d predictions. When the lower layers are
poorly initialized, these deterministic and continuoysresentations generally keep most of the information
about the input, but these representations might scramél@put and hurt rather than help the top layers to
perform classifications that generalize well.

According to this hypothesis, although replacing the top kayers of a deep neural network by convex
machinery such as a Gaussian process or an SVM can yield sopneviements (Bengio & LeCun, 2007),
especially on the training error, it would not help much inme of generalization if the lower layers have

5in the same basin of attraction of the gradient descent ptoee
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not been sufficiently optimized, i.e., if a good represeaatetf the raw input has not been discovered.

Hence, one hypothesis is that unsupervised pre-trainitgs lgeneralization by allowing for a 'better’
tuning of lower layers of a deep architecture. Althoughnirag error can be reduced either by exploiting
only the top layers ability to fit the training examples, betjeneralization is achieved when all the layers are
tuned appropriately. Another source of better generatimatould come from a form of regularization: with
unsupervised pre-training, the lower layers are constthin capture regularities of the input distribution.
Consider random input-output paif&,Y). Such regularization is similar to the hypothesized effec
unlabeled examples in semi-supervised learning (LassBisbop, & Minka, 2006) or the regularization
effect achieved by maximizing the likelihood &f(X,Y") (generative models) v®(Y|X) (discriminant
models) (Ng & Jordan, 2002; Liang & Jordan, 2008). If the t@geX) and P(Y|X) are unrelated as
functions of X (e.g., chosen independently, so that learning about onemtuténform us of the other), then
unsupervised learning d?(X) is not going to help learning (Y| X). But if they are related, and if the
same parameters are involved in estimatitg{) and P(Y| X)’, then each{ X, Y") pair brings information
on P(Y|X) not only in the usual way but also through X'). For example, in a Deep Belief Net, both
distributions share essentially the same parametersegmatiameters involved in estimatiftfY’| X ) benefit
from a form of data-dependent regularization: they havegre@to some extent witl?(Y|X) as well as
with P(X).

Let us return to the optimization versus regularizationlaxation of the better results obtained with
unsupervised pre-training. Note how one should be carefgnausing the word 'optimization’ here. We
do not have an optimization difficulty in the usual sense efword. Indeed, from the point of view of
the whole network, there is no difficulty since one can drianing error very low, by relying mostly
on the top two layers. However, if one considers the problémuming the lower layers (while keeping
small either the number of hidden units of the penultimayeddi.e. top hidden layer) or the magnitude of
the weights of the top two layers), then one can maybe talkitadio optimization difficulty. One way to
reconcile the optimization and regularization viewpoimight be to consider the truly online setting (where
examples come from an infinite stream and one does not cycletheough a training set). In that case,
online gradient descent is performing a stochastic opttion of the generalization error. If the effect of
unsupervised pre-training was purely one of regulariratime would expect that with a virtually infinite
training set, online error with or without pre-training wdwonverge to the same level. On the other hand, if
the explanatory hypothesis presented here is correct, widvexpect that unsupervised pre-training would
bring clear benefits even in the online setting. To exploat ¢fuestion, we have used the ’infinite MNIST’
dataset (Loosli, Canu, & Bottou, 2007) i.e. a virtually inténstream of MNIST-like digit images (obtained
by random translations, rotations, scaling, etc. defin&inmard, LeCun, and Denker (1993)). As illustrated
in Figure 7, a 3-hidden layer neural network trained onlineverges to significantly lower error when it
is pre-trained (as a Stacked Denoising Auto-Encoder, setto8er.2). The figure shows progress with the
online error (on the next 1000 examples), an unbiased MGat#e estimate of generalization error. The first
2.5 million updates are used for unsupervised pre-trainitte figure strongly suggests that unsupervised
pre-training converges to a lower error, i.e., that it acisamly as a regularizer but also to find better minima
of the optimized criterion. In spite of appearances, thissdoot contradict the regularization hypothesis:
because of local minima, the regularization effect pessgstn as the number of examples goes to infinity.
The flip side of this interpretation is that once the dynamrestrapped near some apparent local minimum,
more labeled examples do not provide a lot more new infolonati

To explain that lower layers would be more difficult to opta®j the above clues suggest that the gradient
propagated backwards into the lower layer might not be seffico move the parameters into regions cor-
responding to good solutions. According to that hypothéisesoptimization with respect to the lower level
parameters gets stuck in a poor apparentlocal minimum tequlgi.e. small gradient). Since gradient-based

8For example, the MNIST digit images form rather well-sepetteclusters, especially when learning good representatieven
unsupervised (van der Maaten & Hinton, 2008), so that thésiecsurfaces can be guessed reasonably well even befeirg sy
label.

"For example, all the lower layers of a multi-layer neuralegitmatingP (Y| X) can be initialized with the parameters from a Deep
Belief Net estimatingP(X).
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Figure 7: Deep architecture trained online with 10 milliosmples of digit images, either with pre-training
(triangles) or without (circles). The classification erstiown (vertical axis, log-scale) is computed online
on the next 1000 examples, plotted against the number of geanseen from the beginning. The first
2.5 million examples are used for unsupervised pre-trgifigf a stack of denoising auto-encoders). The
oscillations near the end are because the error rate is t@@ ¢b zero, making the sampling variations
appear large on the log-scale. Whereas with a very larganigaset regularization effects should dissipate,
one can see that without pre-training, training convergesypoorer apparent local minimum: unsupervised
pre-training helps to find a better minimum of the online erE&xperiments performed by Dumitru Erhan.
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training of the top layers works reasonably well, it wouldanghat the gradient becomes less informative
about the required changes in the parameters as we movedwaids the lower layers, or that the error
function becomes too ill-conditioned for gradient desderdscape these apparent local minima. As argued
in Section 4.5, this might be connected with the observatiahdeep convolutional neural networks are eas-
ier to train, maybe because they have a very special spansectivity in each layer. There might also be
a link between this difficulty in exploiting the gradient ieep networks and the difficulty in training recur-
rent neural networks through long sequences, analyzed ¢chitdder (1991), Bengio, Simard, and Frasconi
(1994), Lin, Horne, Tino, and Giles (1995). A recurrent reduretwork can be “unfolded in time” by con-
sidering the output of each neuron at different time stephfesent variables, making the unfolded network
over a long input sequence a very deep architecture. Inmetumeural networks, the training difficulty can
be traced to a vanishing (or sometimes exploding) gradieqggated through many non-linearities. There
is an additional difficulty in the case of recurrent neuralwegks, due to a mismatch between short-term
(i.e., shorter paths in unfolded graph of computations)lang-term components of the gradient (associated
with longer paths in that graph).

4.3 Unsupervised Learning for Deep Architectures

As we have seen above, layer-wise unsupervised learningg®asa crucial component of all the successful
learning algorithms for deep architectures up to now. Ifggats of a criterion defined at the output layer
become less useful as they are propagated backwards to layess, it is reasonable to believe that an
unsupervised learning criterion defined at the level of glsifayer could be used to move its parameters in
a favorable direction. It would be reasonable to expecithi single-layer learning algorithm discovered a
representation that captures statistical regulariti¢sefayer’s input. PCA and the standard variants of ICA
requiring as many causes as signals seem inappropriatedeetteey generally do not make sense in the so-
calledovercomplete casevhere the number of outputs of the layer is greater than tineber of its inputs.
This suggests looking in the direction of extensions of I@Adeal with the overcomplete case (Lewicki
& Sejnowski, 1998; Hyvarinen, Karhunen, & Oja, 2001; HimtdNVelling, Teh, & Osindero, 2001; Teh,
Welling, Osindero, & Hinton, 2003), as well as algorithmkated to PCA and ICA, such as auto-encoders
and RBMs, which can be applied in the overcomplete case ethdxperiments performed with these one-
layer unsupervised learning algorithms in the context ofittiflayer system confirm this idea (Hinton et al.,
2006; Bengio et al., 2007; Ranzato et al., 2007). Furtheenstacking linear projections (e.g. two layers of
PCA) is still a linear transformation, i.e., not buildingeger architectures.

In addition to the motivation that unsupervised learninglddelp reduce the dependency on the unre-
liable update direction given by the gradient of a suped/isdterion, we have already introduced another
motivation for using unsupervised learning at each leval @éep architecture. It could be a way to naturally
decompose the problem into sub-problems associated viféretit levels of abstraction. We know that
unsupervised learning algorithms can extract salientimé&ion about the input distribution. This informa-
tion can be captured in a distributed representation d.eet of features which encode the salient factors of
variation in the input. A one-layer unsupervised learnitggpathm could extract such salient features, but
because of the limited capacity of that layer, the featuxémeted on the first level of the architecture can
be seen akw-level featureslt is conceivable that learning a second layer based onaime principle but
taking as input the features learned with the first layer @@xitract slightlyhigher-level featuresin this
way, one could imagine that higher-level abstractions tharacterize the input could emerge. Note how
in this process all learning could remain local to each latregrefore side-stepping the issue of gradient
diffusion that might be hurting gradient-based learningl@ép neural networks, when we try to optimize a
single global criterion. This motivates the next sectioheve we discuss deep generative architectures and
introduce Deep Belief Networks formally.
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Figure 8: Example of a generative multi-layer neural nelwbere a sigmoid belief network, represented as
a directed graphical model (with one node per random vagjabid directed arcs indicating direct depen-
dence). The observed datakignd the hidden factors at levielare the elements of vecthF. The top layer

h3 has a factorized prior.

4.4 Deep Generative Architectures

Besides being useful for pre-training a supervised predietnsupervised learning in deep architectures
can be of interest to learn a distribution and generate sssripbm it. Generative models can often be
represented as graphical models (Jordan, 1998): thesesasdized as graphs in which nodes represent ran-
dom variables and arcs say something about the type of depepéxisting between the random variables.
The joint distribution of all the variables can be writtentérms of products involving only a node and its
neighbors in the graph. With directed arcs (defining pam@mdl, a node is conditionally independent of its
ancestors, given its parents. Some of the random variabkegiaphical model can be observed, and others
cannot (called hidden variables). Sigmoid belief netwatkes generative multi-layer neural networks that
were proposed and studied before 2006, and trained usiigjigaal approximations (Dayan, Hinton, Neal,
& Zemel, 1995; Hinton, Dayan, Frey, & Neal, 1995; Saul, Jad#k& Jordan, 1996; Titov & Henderson,
2007). In a sigmoid belief network, the units (typically &ig random variables) in each layer are indepen-
dent given the values of the units in the layer above, adiited in Figure 8. The typical parametrization
of these conditional distributions (going downwards iagtef upwards in ordinary neural nets) is similar to
the neuron activation equation of eq. 3:

P(hf = 1|0**!) = sigm(b} + ) " Wi hit) (5)
J

whereh? is the binary activation of hidden nodé layerk, h* is the vectofh¥, h5%, .. .), and we denote the
input vectorx = h®. Note how the notatio®(. ..) always represents a probability distribution associated
with our model, wherea# is the training distribution (the empirical distributiofi the training set, or the
generating distribution for our training examples). Thédm layer generates a vectoin the input space,
and we would like the model to give high probability to theirilag data. Considering multiple levels, the
generative model is thus decomposed as follows:

{—1

P(x,h',... h") = P(h%) (H P(hﬂh’f“)) P(x|h?) (6)

k=1

and marginalization yieldB(x), but this is intractable in practice except for tiny modétsa sigmoid belief
network, the top level prioP(h) is generally chosen to be factorized, i.e., very simpiéa’) = []. P(h?),
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P(*,h°) ~ RB

Figure 9: Graphical model of a Deep Belief Network with olyservectorx and hidden layerk®, h? and
h3. Notation is as in Figure 8. The structure is similar to a sigivbelief network, except for the top
two layers. Instead of having a factorized prior #8(h?), the joint of the top two layersP’(h?, h?), is a
Restricted Boltzmann Machine. The model is mixed, with dewsrrows on the arcs between the top two
layers because an RBM is an undirected graphical modelrrtithe a directed one.

and a single Bernoulli parameter is required for e®¢h! = 1) in the case of binary units.
Deep Belief Networks are similar to sigmoid belief netwqitlist with a slightly different parametrization
for the top two layers, as illustrated in Figure 9:

-2

P(x,h',... h") = P(h~' h’) <H P(hk|hk=+1)> P(x|h"). 7)
k=1

The joint distribution of the top two layers is a RestrictealBmann Machine (RBM),

Figure 10: Undirected graphical model of a Restricted Bodmn Machine (RBM). There are no links
between units of the same layer, only between input (or ksinitsx; and hidden unitd;, making the
conditionalsP(h|x) and P(x|h) factorize conveniently.

P(hzfl,hé) x eb’h"_1+c’h1‘+h" Wht! (8)
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illustrated in Figure 10, and whose inference and trainigorithms are described in more detail in Sec-
tions 5.3 and 5.4 respectively. This apparently slight ¢feefnom sigmoidal belief networks to DBNs comes
with a different learning algorithm, which exploits the ot of training greedily one layer at a time, building
up gradually more abstract representations of the raw impaithe posteriors®(h*|x). A detailed descrip-
tion of RBMs and of the greedy layer-wise training algorithfar deep architectures follows in Sections 5
and 6.

4.5 Convolutional Neural Networks

Although deep supervised neural networks were generalipdaoo difficult to train before the use of
unsupervised pre-training, there is one notable exceptimmvolutional neural networks. Convolutional nets
were inspired by the visual system’s structure, and in paldr by the models of it proposed by Hubel and
Wiesel (1962). The first computational models based on tloesd connectivities between neurons and on
hierarchically organized transformations of the imagefavad in Fukushima’s Neocognitron (Fukushima,
1980). As he recognized, when neurons with the same paresvate applied on patches of the previous
layer at different locations, a form of translational ineaice is obtained. Later, LeCun and collaborators,
following up on this idea, designed and trained convolwtlaretworks using the error gradient, obtaining
state-of-the-art performance (LeCun et al., 1989; Le Cual.et998) on several pattern recognition tasks.
Modern understanding of the physiology of the visual sysieponsistent with the processing style found
in convolutional networks (Serre et al., 2007), at leastlfierquick recognition of objects, i.e., without the
benefit of attention and top-down feedback connections hikoday, pattern recognition systems based on
convolutional neural networks are among the best perfagraystems. This has been shown clearly for
handwritten character recognition (Le Cun et al., 1998)¢ctvhas served as a machine learning benchmark
for many years.

Concerning our discussion of training deep architectuties, example of convolutional neural net-
works (LeCun et al., 1989; Le Cun et al., 1998; Simard et &0 Ranzato et al., 2007) is interesting
because they typically have five, six or seven layers, a nuofilayers which makes fully-connected neural
networks almost impossible to train properly when inigatli randomly. What is particular in their architec-
ture that might explain their good generalization perfangein vision tasks?

LeCun’s convolutional neural networks are organized irefayof two types: convolutional layers and
subsampling layers. Each layer hasopographic structurgi.e., each neuron is associated with a fixed
two-dimensional position that corresponds to a locatioth@input image, along with a receptive field (the
region of the input image that influences the response of ¢lieom). At each location of each layer, there
are a number of different neurons, each with its set of inpigits, associated with neurons in a rectangular
patch in the previous layer. The same set of weights, butfardift input rectangular patch, are associated
with neurons at different locations.

One untested hypothesis is that the small fan-in of thesenefew inputs per neuron) helps gradients
to propagate through so many layers without diffusing solmasto become useless. Note that this alone
would not suffice to explain the success of convolutionalvoeks, since random sparse connectivity is not
enough to yield good results in deep neural networks. Howewveeffect of the fan-in would be consistent
with the idea that gradients propagated through many patiduglly become too diffuse, i.e., the credit
or blame for the output error is distributed too widely andhith Another hypothesis (which does not
necessarily exclude the first) is that the hierarchicalllooanectivity structure is a very strong prior that is
particularly appropriate for vision tasks, and sets thepeters of the whole network in a favorable region
(with all non-connections corresponding to zero weightyrfrwhich gradient-based optimization works
well. The fact is that even witrandom weightsn the first layers, a convolutional neural network performs
well (Ranzato, Huang, Boureau, & LeCun, 2007), i.e., bdtian a trained fully connected neural network
but worse than a fully optimized convolutional neural nativo

8Maybe too many years? Itis good that the field is moving towandre ambitious benchmarks, such as those introduced byr,eC
Huang, and Bottou (2004), Larochelle et al. (2007).
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Very recently, the convolutional structure has been imgzbihto RBMs (Desjardins & Bengio, 2008)
and DBNs (Lee et al., 2009). An important innovation in Lealet(2009) is the design of a generative
version of the pooling / subsampling units, which workeduigally in the experiments reported, yielding
state-of-the-art results not only on MNIST digits but alsdioe Caltech-101 object classification benchmark.
In addition, visualizing the features obtained at eachll@he patterns most liked by hidden units) clearly
confirms the notion of multiple levels of composition whiclotirated deep architectures in the first place,
moving up from edges to object parts to objects in a naturgl wa

4.6 Auto-Encoders

Some of the deep architectures discussed below (Deep Baisfand Stacked Auto-Encoders) exploit as
component or monitoring device a particular type of neustlvork: the auto-encoder, also called auto-
associator, or Diabolo network (Rumelhart et al., 1986hjtkod & Kamp, 1988; Hinton & Zemel, 1994;
Schwenk & Milgram, 1995; Japkowicz, Hanson, & Gluck, 2000here are also connections between the
auto-encoder and RBMs discussed in Section 5.4.3, showat@uto-encoder training approximates RBM
training by Contrastive Divergence. Because training @on-aacoder seems easier than training an RBM,
they have been used as building blocks to train deep netwatiere each level is associated with an auto-
encoder that can be trained separately (Bengio et al., ZR@izato et al., 2007; Larochelle et al., 2007;
Vincent et al., 2008).

An auto-encoder is trained to encode the inpunto some representatiarix) so that the input can be
reconstructed from that representation. Hence the tatgptibof the auto-encoder is the auto-encoder input
itself. If there is one linear hidden layer and the mean segliarror criterion is used to train the network,
then thek hidden units learn to project the input in the span of the firgtrincipal components of the
data (Bourlard & Kamp, 1988). If the hidden layer is non-nghe auto-encoder behaves differently from
PCA, with the ability to capture multi-modal aspects of thpit distribution (Japkowicz et al., 2000). The
formulation that we prefer generalizes the mean squared eriterion to the minimization of the negative
log-likelihood of the reconstruction, given the encodifig):

RE = —log P(x|c(x)). 9

If x|c(x) is Gaussian, we recover the familiar squared error. If tpetsx; are either binary or considered
to be binomial probabilities, then the loss function woudd b

—log P(x|c(x)) = — ZX7 log f;(c(x)) + (1 — x;) log(1 — fi(c(x))) (20)

wheref(-) is called thedecoderandf(c(x)) is the reconstruction produced by the network, and in trég ca
should be a vector of numbers f, 1), e.g., obtained with a sigmoid. The hope is that the agde is a
distributed representation that captures the main facforariation in the data: becauséx) is viewed as a
lossy compression of, it cannot be a good compression (with small loss) fokako learning drives it to
be one that is a good compression in particular for trainiagmples, and hopefully for others as well (and
that is the sense in which an auto-encoder generalizes)ab@ior arbitrary inputs.

One serious issue with this approach is that if there is neratbnstraint, then an auto-encoder with
n-dimensional input and an encoding of dimension at leasbuld potentially just learn the identity func-
tion, for which many encodings would be useless (e.g., jopying the input). Surprisingly, experiments
reported in Bengio et al. (2007) suggest that in practicesmthained with stochastic gradient descent, non-
linear auto-encoders with more hidden units than inputbe@@vercomplete) yield useful representations
(in the sense of classification error measured on a netw&ikgdhis representation in input). A simple
explanation is based on the observation that stochastitiegradescent with early stopping is similar to an
{5 regularization of the parameters (Zinkevich, 2003; Ca#al& Bengio, 2004). To achieve perfect re-
construction of continuous inputs, a one-hidden layer-amwooder with non-linear hidden units needs very
small weights in the first layer (to bring the non-linearifittoe hidden units in their linear regime) and very
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large weights in the second layer. With binary inputs, vemgé weights are also needed to completely
minimize the reconstruction error. Since the implicit opkeit regularization makes it difficult to reach
large-weight solutions, the optimization algorithm findeedings which only work well for examples simi-
lar to those in the training set, which is what we want. It msstdyat the representation is exploiting statistical
regularities present in the training set, rather than legrto replicate the identity function.

There are different ways that an auto-encoder with moredridohits than inputs could be prevented from
learning the identity, and still capture something usehdu the input in its hidden representation. Instead
or in addition to constraining the encoder by explicit or limipregularization of the weights, one strategy is
to add noise in the encoding. This is essentially what RBMsadave will see later. Another strategy, which
was found very successful (Olshausen & Field, 1997; Doic&al & Lewicki, 2006; Ranzato et al., 2007;
Ranzato & LeCun, 2007; Ranzato et al., 2008; Mairal, BacmcBpSapiro, & Zisserman, 2009), is based
on a sparsity constraint on the code. Interestingly, thepeaaches give rise to weight vectors that match
well qualitatively the observed receptive fields of neurom¥1 and V2 (Lee, Ekanadham, & Ng, 2008),
major areas of the mammal visual system. The question o$ip#s discussed further in Section 7.1.

Whereas sparsity and regularization reduce represemgéhtiapacity in order to avoid learning the iden-
tity, RBMs can have a very large capacity and still not leqnitlentity, because they are not (only) trying
to encode the input but also to capture the statistical treén the input, by approximately maximizing the
likelihood of a generative model. There is a variant of aemgoder which shares that property with RBMs,
calleddenoising auto-encoddNincent et al., 2008). The denoising auto-encoder mingsithe error in
reconstructing the input from a stochastically corruptads¢formation of the input. It can be shown that it
maximizes a lower bound on the log-likelihood of a geneeativodel. See Section 7.2 for more details.

5 Energy-Based Models and Boltzmann Machines

Because Deep Belief Networks (DBNs) are based on Restrigsétdmann Machines (RBMs), which are
particularenergy-based models/e introduce here the main mathematical concepts helpfuhtlerstand
them, includingContrastive DivergencgCD).

5.1 Energy-Based Models and Products of Experts

Energy-basednodels associate a scalar energy to each configuration ofaitiebles of interest (LeCun

& Huang, 2005; LeCun, Chopra, Hadsell, Ranzato, & Huang62&&anzato, Boureau, Chopra, & LeCun,
2007). Learning corresponds to modifying that energy fimmcdo that its shape has desirable properties. For
example, we would like plausible or desirable configuratittnhave low energy. Energy-based probabilistic
models may define a probability distribution through an gpéuanction, as follows:

e—Energy(x)

Pl = .

(11)
i.e., energies operate in the log-probability domain. Tonvatgeneralizesxponential familynodels (Brown,
1986), for which the energy functioBnergy(x) has the formy(0) - ¢(x). We will see below that the
conditional distribution of one layer given another, in RBM, can be taken from any of the exponential
family distributions (Welling, Rosen-Zvi, & Hinton, 2005)Whereas any probability distribution can be
cast as an energy-based models, many more specializeétwistn families, such as the exponential family,
can benefit from particular inference and learning procesluSome instead have explored rather general-
purpose approachesto learning in energy-based model&fiHgwn, 2005; LeCun et al., 2006; Ranzato et al.,
2007).

The normalizing factoZ is called thepartition functionby analogy with physical systems,

7 — Z e~ Energy(x) (12)
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with a sum running over the input space, or an appropriaggiat wherx is continuous. Some energy-based
models can be defined even when the sum or integra fdoes not exist (see sec.5.1.2).

In the product of expertéormulation (Hinton, 1999, 2002), the energy function isuasof terms, each
one associated with an “expelf;:

Energy(x) = Z fi(x), (13)

P(x) x HPi(x) x He_fi(x). (14)

Each expertP;(x) can thus be seen as a detector of implausible configurationrs or equivalently, as
enforcing constraints or. This is clearer if we consider the special case whgf&) can only take two
values, one (small) corresponding to the case where théraomss satisfied, and one (large) corresponding
to the case where it is not. Hinton (1999) explains the acge® of a product of experts by opposition to
a mixture of expertsvhere the product of probabilities is replaced by a weiglsteth of probabilities. To
simplify, assume that each expert corresponds to a conssthait can either be satisfied or not. In a mixture
model, the constraint associated with an expert is an itidicaf belonging to a region which excludes the
other regions. One advantage of the product of experts fation is therefore that the set ¢f(x) forms

a distributed representation: instead of trying to pamitihe space with one region per expert as in mixture
models, they partition the space according to all the ptessitnfigurations (where each expert can have its
constraint violated or not). Hinton (1999) proposed an atgm for estimating the gradient d6g P(x) in

ed. 14 with respect to parameters associated with eachtexping the first instantiation (Hinton, 2002) of
the Contrastive Divergence algorithm (Section 5.4).

5.1.1 Introducing Hidden Variables

In many cases of interest,has many component variabteg and we do not observe of these components
simultaneously, or we want to introduce some non-obseraeidiies to increase the expressive power of
the model. So we consider an observed part (still denoteere) and diddenparth

e—Energy(x,h)

P(x,h) = 15
(x.h) 7 (15)
and because only is observed, we care about the marginal
e—Energy(x,h)
P(x) = e — 16
x)=> — (16)

In such cases, to map this formulation to one similar to eqwielintroduce the notation (inspired from
physics) offree energydefined as follows:

efFreeEnergy(x)

P(x) = 17
() Sl a7)
with Z = 3= e FrecEnerey(x) j g,
FreeEnergy(x) = — 1ogz e~ Energy(x.h) (18)
h

So the free energy is just a marginalization of energieseridlg-domain. The data log-likelihood gradient
then has a particularly interesting form. Let us introddde represent parameters of the model. Starting
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from eq. 17, we obtain

dlog P(x) _ OFreeEnergy(x ) Z o—FrecEnergy(% ) OFreeEnergy(x)
00 B 00 Z 00
B 8FreeEnergy 8FreeEnergy(§<)
= ————on Z P(%) —————— (19)
Hence the average log-likelihood gradient over the trgsiet is
dlog P(x)] OFreeEnergy(x) OFreeEnergy(x)
Fe [ oo |~ e a0 thr 00 €0

where expectations are oveywith P the training set empirical distribution arft the expectation under
the model’s distributior?. Therefore, if we could sample frofd and compute the free energy tractably, we
would have a Monte-Carlo method to obtain a stochastic estirof the log-likelihood gradient.

If the energy can be written as a sum of terms associated wittost one hidden unit

Energy(x, h) )+ Z% x, h;) (21)

a condition satisfied in the case of the RBM, then the freeggnand numerator of the likelihood can be
computed tractably (even though it involves a sum with aroegptial number of terms):

P(X) — %e—FreeEnergy(x) — % Z e—Energy(x,h)
S 50 0 WS AEETES 0 oE0 Wl |
h1 ho h; hy i
— —71(x,hy) Z e~ 2(xha) Z e~ Yk (x:hk)
ho hy,
_ —i(xhe) (22)

In the above) -, is a sum over all the values thag can take (e.g. 2 values in the usual binomial units case);
note how that sum is much easier to carry out than the sijrover all values oh. Note that all sums can
be replaced by integralsif is continuous, and the same principles apply. In many cddateoest, the sum

or integral (over a single hidden unit’s values) is easy tmgote. The numerator of the likelihood (i.e. also
the free energy) can be computed exactly in the above casgeWhergy(x, h) = —8(x) + >, vi(x, h;),

and we have

FreeEnergy(x) = —log P(x) —log Z = —f3(x) — Z log Z e iR, (23)

5.1.2 Conditional Enelgy-Based Models

Whereas computing the partition function is difficult in geal, if our ultimate goal is to make a decision
concerning a variablg given a variablex, instead of considering all configuratiots, y), it is enough to
consider the configurations gffor each giverx. A common case is one whegecan only take values in a

small discrete set, i.e.,
e—Energy(x,y)

P = S o (24)

28



In this case the gradient of the conditional log-likelihawith respect to parameters of the energy function
can be computed efficiently. This formulation applies tostdminant variant of the RBM called Discrimi-
native RBM (Larochelle & Bengio, 2008). Such conditiona¢egy-based models have also been exploited
in a series of probabilistic language models based on neetalorks (Bengio et al., 2001; Schwenk &
Gauvain, 2002; Bengio, Ducharme, Vincent, & Jauvin, 2003; Emami, & Jelinek, 2003; Schwenk, 2004;
Schwenk & Gauvain, 2005; Mnih & Hinton, 2009). That formidat (or generally when it is easy to sum
or maximize over the set of values of the terms of the partiimction) has been explored at length (LeCun
& Huang, 2005; LeCun et al., 2006; Ranzato et al., 2007, 2Q@Hpbert & Weston, 2008). An important
and interesting element in the latter work is that it shoveg #uch energy-based models can be optimized
not just with respect to log-likelihood but with respect tora general criteria whose gradient has the prop-
erty of making the energy of “correct” responses decreaskewtaking the energy of competing responses
increase. These energy functions do not necessarily gieetoi a probabilistic model (because the expo-
nential of the negated energy function is not required tonlbegrable), but they may nonetheless give rise
to a function that can be used to chogsgivenx, which is often the ultimate goal in applications. Indeed
wheny takes a finite number of valueB(y|x) can always be computed since the energy function needs to
be normalized only over the possible valueg of

5.2 Boltzmann Machines

The Boltzmann machine is a particular type of energy-basedetwith hidden variables, and RBMs are
special forms of Boltzmann machines in whiBiih|x) andP(x|h) are both tractable because they factorize.
In a Boltzmann machine (Hinton, Sejnowski, & Ackley, 1984ckdey et al., 1985; Hinton & Sejnowski,
1986), the energy function is a general second-order patyalo

Energy(x,h) = —b’x — ¢/h — h'Wx — x'Ux — h’Vh. (25)

There are two types of parameters, which we collectivelyotkehyd: the offsetdb; andc; (each associated
with a single element of the vectaror of the vectoih), and the weight$V/;;, U;; andV;; (each associated
with a pair of units). Matriceg/ andV are assumed to be symmeffiand in most models with zeros in
the diagonal. Non-zeros in the diagonal can be used to obther variants, e.g., with Gaussian instead of
binomial units (Welling et al., 2005).

Because of the quadratic interaction termhjihe trick to analytically compute the free energy (eq. 22)
cannot be applied here. However, an MCMC (Monte Carlo MaiRbain (Andrieu, de Freitas, Doucet, &
Jordan, 2003)) sampling procedure can be applied in ordetiin a stochastic estimator of the gradient.
The gradient of the log-likelihood can be written as followtirting from eq. 16:

0 10g P(X) B o 10g Eh e—Energy(x,h) B 0 1Og Zi,h e—Energy(i,h)
00 N 00 00
1 —Energy(x,h) 8Energy(x7 h)
- Eh e—Energy(x,h) Z € 90

1 —Energy(x,h) aEnergY(iv h)
+ Zi,h e—Energy(%,h) Z € 00

8Energy (x,h) OEnergy(x, h
- —ZP (h[x) +ZP #. (26)

Note that%g(x’m is easy to compute. Hence if we have a procedure to samplefdijx) and one to
sample fromP(x, h), we can obtain an unbiased stochastic estimator of thelktetiHood gradient. Hinton

9E.g. if U was not symmetric, the extra degrees of freedom evbelwasted since;U;;x; + x;U;;x; can be rewrittenc; (U;; +
Uji)x; = 5%(Us; + Uji)xj + $%;(Uis + Ujs)xq, i.€., in a symmetric-matrix form.
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et al. (1984), Ackley et al. (1985), Hinton and Sejnowskig&pintroduced the following terminology: in
the positive phasex is clampedto the observed input vector, and we samblgivenx; in the negative
phasebothx andh are sampled, ideally from the model itself. In general, apyproximate sampling can
be achieved tractably, e.g., using an iterative procechaedonstructs an MCMC. The MCMC sampling
approach introduced in Hinton et al. (1984), Ackley et a@§3), Hinton and Sejnowski (1986) is based on
Gibbs samplindGeman & Geman, 1984; Andrieu et al., 2003). Gibbs samplfrtg@joint of N random
variablesS = (5 ... Sy) is done through a sequenceMfsampling sub-steps of the form

S; ~ P(Si|S—i =s_i) (27)

where S_; contains theN — 1 other random variables iff, excludingsS;. After theseN samples have
been obtained, a step of the chain is completed, yieldingraof.S whose distribution converges to
P(S) as the number of steps goestg under some conditions. A sufficient condition for convergeof a
finite-state Markov Chain is that it is aperioti@nd irreduciblé.

How can we perform Gibbs sampling in a Boltzmann machines et(x, h) denote all the units in the
Boltzmann machine, arl_; the set of values associated with all units exceptittreone. The Boltzmann
machine energy function can be rewritten by putting all taemeters in a vecter and a symmetric matrix
A,

Energy(s) = —d’s — s’ 4s. (28)

Let d_; denote the vectod without the elemend;, A_; the matrixA without thei-th row and column,
anda_; the vector that is théth row (or column) ofA, without thei-th element. Using this notation, we
obtain thatP(s;|s_;) can be computed and sampled from easily in a Boltzmann machkior example, if
s; € {0, 1} and the diagonal ofl is null:

exp(di + d/_is—i + Qal_is—i + Sl_iA—iS—i)

Plsi=1ls-s) = exp(d;, +d’_;s_; +2a’ s_;+s A ;s_;)+exp(d_ ,s_; +s_,A_;s_;)
exp(d; + 2a’_;s_;) 1
- exp(d; +2a’_;s_;) +1 T 1+ exp(—d; —2a’ ;s_,)
= sigm(d; +2a’ ;s_;) (29)

which is essentially the usual equation for computing a ee'sroutput in terms of other neurors;, in
artificial neural networks.

Since two MCMC chains (one for the positive phase and onéhfonegative phase) are needed for each
examplex, the computation of the gradient can be very expensive, iinirig time very long. This is
essentially why the Boltzmann machine was replaced in tiee8@’s by the back-propagation algorithm for
multi-layer neural networks as the dominant learning appino However, recent work has shown that short
chains can sometimes be used successfully, and this is ithepbe of Contrastive Divergence, discussed
below (section 5.4) to train RBMs. Note also that the negativase chain does not have to be restarted for
each new example (since it does not depend on the training data), and thisreétsen has been exploited
in persistent MCMC estimators (Tieleman, 2008; Salakmatdi& Hinton, 2009) discussed in Section 5.4.2.

5.3 Restricted Boltzmann Machines

TheRestrictedBoltzmann Machine (RBM) is the building block of a Deep BENetwork (DBN) because
it shares parametrization with individual layers of a DBNdaecause efficient learning algorithms were
found to train it. The undirected graphical model of an RBMilligstrated in Figure 10, showing that
the h; are independent of each other when conditioningcoand thex; are independent of each other
when conditioning orh. In an RBM,U = 0 andV = 0 in eq. 25, i.e., the only interaction terms are

10Aperiodic: no state is periodic with peridd> 1; a state has periokl if one can only return to it at timeis+ k, t + 2k, etc.
Uyrreducible: one can reach any state from any state in fiimite with non-zero probability.
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between a hidden unit and a visible unit, but not betweerswiithe same layer. This form of model was
first introduced under the name bfarmonium(Smolensky, 1986), and learning algorithms (beyond the
ones for Boltzmann Machines) were discussed in Freund anddtz (1994). Empirically demonstrated
and efficient learning algorithms and variants were progaesere recently (Hinton, 2002; Welling et al.,
2005; Carreira-Perpifian & Hinton, 2005). As a consequ@efitlee lack of input-input and hidden-hidden
interactions, the energy function is bilinear,

Energy(x,h) = —b'x — ¢/h — h’'Wx (30)

and the factorization of the free energy of the input, intreed with eq. 21 and 23 can be applied with
B(x) = b’x and~;(x, h;) = —h;(c; + W;x), whereW; is the row vector corresponding to ti¢h row of
W. Therefore the free energy of the input (i.e. its unnornealitog-probability) can be computed efficiently:

FreeEnergy(x) = —b'x — Z log Z ehi(eitWix) (31)
) h;

Using the same factorization trick (in eq. 22) due to the affirm of Energy(x, h) with respect td,

we readily obtain a tractable expression for the conditipnabability P(h|x):

exp(b’x + ¢’h + h'Wx)
Sk exp(b’x + ¢/h + h'IWx)

[L; exp(cih; + h; Wix)
[L> s, exp(c;h; + h; Wix)
B H exp(h;(c; + W;x))
S exp(hi(e; + Wix))

HP(hi|x).

In the commonly studied case whéige {0, 1}, we obtain the usual neuron equation for a neuron’s output
given its input:

P(hlx) =

ec,;+Wix

Plhi =1x) = 5w

= sigm(c; + W;x). (32)

Sincex andh play a symmetric role in the energy function, a similar dativn allows to efficiently compute
and sample”(x|h):
P(x/h) = [ P(xih) (33)

and in the binary case
P(x; = 1|h) = sigm(b; + W/;h) (34)

whereW; is thej-th column ofiV.

In Hinton et al. (2006), binomial input units are used to afepixel gray levels in input images as if
they were the probability of a binary event. In the case ofdwaiiten character images this approximation
works well, but in other cases it does not. Experiments shgwhe advantage of using Gaussian input
units rather than binomial units when the inputs are cowotirssvalued are described in Bengio et al. (2007).
See Welling et al. (2005) for a general formulation wherandh (given the other) can be in any of the
exponential family distributions (discrete and continslpu

Although RBMs might not be able to represent efficiently satistributions that could be represented
compactly with an unrestricted Boltzmann machine, RBMsregmesent any discrete distribution (Freund
& Haussler, 1994; Le Roux & Bengio, 2008), if enough hiddeitaiare used. In addition, it can be shown
that unless the RBM already perfectly models the trainirggrittiution, adding a hidden unit (and properly
choosing its weights and offset) can always improve thdlikegihood (Le Roux & Bengio, 2008).
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An RBM can also be seen as forming a multi-clustering (seé@®e8.2), as illustrated in Figure 5. Each
hidden unit creates a 2-region partition of the input spadth(a linear separation). When we consider the
configurations of say three hidden units, there are 8 cooretipg possible intersections of 3 half-planes
(by choosing each half-plane among the two half-planescéteal with the linear separation performed by
a hidden unit). Each of these 8 intersections corresponasegion in input space associated with the same
hidden configuration (i.e. code). The binary setting of tidelan units thus identifies one region in input
space. For alk in one of these region® (h|x) is maximal for the correspondiftgconfiguration. Note that
not all configurations of the hidden units correspond to a@mpty region in input space. As illustrated in
Figure 5, this representation is similar to what an ensemwib®eleaf trees would create.

The sum over the exponential number of possible hidden-legefigurations of an RBM can also be
seen as a particularly interesting form of mixture, with apanential number of components (with respect
to the number of hidden units and of parameters):

P(x) = P(x/h)P(h) (35)
h

where P(x|h) is the model associated with the component indexed by caafigm h. For example, if
P(x|h) is chosen to be Gaussian (see Welling et al. (2005), Bengib €007)), this is a Gaussian mixture
with 2 components wheh hasn bits. Of course, thes® components cannot be tuned independently
because they depend on shared parameters (the RBM parg)yatelrthat is also the strength of the model,
since it can generalize to configurations (regions of inpate) for which no training example was seen. We
can see that the Gaussian mean (in the Gaussian case) sst@dth componenh is obtained as a linear
combinatiorb + W'h, i.e., each hidden unit bli; contributes (or not) a vectd¥; in the mean.

5.3.1 Gibbs Sampling in RBMs

Sampling from an RBM is useful for several reasons. Firstlof & useful in learning algorithms, to obtain
an estimator of the log-likelihood gradient. Second, insjpa of examples generated from the model is
useful to get an idea of what the model has captured or notipabout the data distribution. Since the
joint distribution of the top two layers of a DBN is an RBM, sgling from an RBM enables us to sample
from a DBN, as elaborated in Section 6.1.

Gibbs sampling in fully connected Boltzmann Machines isvd®cause there are as many sub-steps in
the Gibbs chain as there are units in the network. On the diied, the factorization enjoyed by RBMs
brings two benefits: first we do not need to sample in the pegithase because the free energy (and therefore
its gradient) is computed analytically; second, the setniables in(x, h) can be sampled in two sub-steps
in each step of the Gibbs chain. First we saniplgivenx, and then a new givenh. In general product
of experts models, an alternative to Gibbs sampling is llybtonte-Carlo (Duane, Kennedy, Pendleton,
& Roweth, 1987; Neal, 1994), an MCMC method involving a numiifefree-energy gradient computation
sub-steps for each step of the Markov chain. The RBM stradsitherefore a special case of product of
experts model: théth termlog Zhi eleitWix)hi in eq. 31 corresponds to an expert, i.e., there is one expert
per hidden neuron and one for the input offset. With that isppstructure, a very efficient Gibbs sampling
can be performed. Fdr Gibbs steps, starting from a training example (i.e. sanyffiom P):

X1 o~ P(x)

h; ~ P(hlxy)
xg ~ P(x|hy)
hy, ~ P(

Xp41 ~  Px[hg). (36)
It makes sense to start the chain from a training exampleusecas the model becomes better at capturing

the structure in the training data, the model distributidrand the training distributiod® become more
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similar (having similar statistics). Note that if we stattbe chain fromP itself, it would have converged in
one step, so starting froifA is a good way to ensure that only a few steps are necessargreergence.

Algorithm 1

RBMupdat e(x1, ¢, W, b, c)

This is the RBM update procedure for binomial units. It casiyaadapted to other types of units.
x7 is a sample from the training distribution for the RBM

e is a learning rate for the stochastic gradient descent irtr@stive Divergence

W is the RBM weight matrix, of dimension (hnumber of hidden anitumber of inputs)

b is the RBM offset vector for input units

c is the RBM offset vector for hidden units

Notation: Q(hs. = 1|x3) is the vector with elementg (hy; = 1|x3)

for all hidden units do
e computeQ (hy; = 1|x;) (for binomial unitssigm(c; + Zj Wi;jx1j))
e samplehy; € {0,1} from Q(hy4|x;)
end for
for all visible unitsj do
e computeP (xz; = 1/h;) (for binomial unitssigm(b; + >, Wj;hy;))
e samplexy; € {0,1} from P(x2; = 1|hy)
end for
for all hidden units do
e compute) (hy; = 1|x2) (for binomial units sigm(c; + Zj Wiix2;))
end for
o W — W + e(hi1x] — Q(ha. = 1|x2)x5)
eb — b+e(x; —x2)
ec«—c+elh; —Q(ha = 1]x2))

5.4 Contrastive Divergence

Contrastive Divergence is an approximation of the loghii@od gradient that has been found to be a suc-
cessful update rule for training RBMs (Carreira-Perpi&ahlinton, 2005). A pseudo-code is shown in
Algorithm 1, with the particular equations for the conditéd distributions for the case of binary input and
hidden units.

5.4.1 Justifying Contrastive Divergence

To obtain this algorithm, théirst approximation we are going to make is replace the average over all
possible inputs (in the second term of eq. 20) by a single kar§ince we update the parameters often (e.g.,
with stochastic or mini-batch gradient updates after ona faw training examples), there is already some
averaging going on across updates (which we know to work (kelCun, Bottou, Orr, & Miller, 1998)),
and the extra variance introduced by taking one or a few MCEIGes instead of doing the complete sum
might be partially canceled in the process of online gradigraates, over consecutive parameter updates.
We introduce additional variance with this approximatidhe gradient, but it does not hurt much if it is
comparable or smaller than the variance due to online gnadescent.

Running a long MCMC chain is still very expensive. The ide&eftep Contrastive Divergence (CD-
k) (Hinton, 1999, 2002) is simple, and involvesecond approximation which introduces some bias in the
gradient: run the MCMC chairy, xs, . . . x;41 for only k stepsstarting from the observed example = x.
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The CD+ update (i.e., not the log-likelihood gradient) after sgegmamplex is therefore

OFreeEnergy(x)  OFreeEnergy(x)
> 26 20

wherex = x4 IS the last sample from our Markov chain, obtained aktesteps. We know that when
k — oo, the bias goes away. We also know that when the model ditiibis very close to the empirical
distribution, i.e.,P ~ P, then when we start the chain framn(a sample fromP) the MCMC has already
converged, and we need only one step to obtain an unbiasguleséom P (although it would still be
correlated withx).

The surprising empirical result is that even= 1 (CD-1) often gives good results. An extensive numer-
ical comparison of training with CI2-versus exact log-likelihood gradient has been present&aireira-
Perpifian and Hinton (2005). In these experiments, takilagger than 1 gives more precise results, although
very good approximations of the solution can be obtained &vith £ = 1. Theoretical results (Bengio &
Delalleau, 2009) discussed below in Section 5.4.3 help tletstand why small values éfcan work: CD#%
corresponds to keeping the figsterms of a series that converges to the log-likelihood graidi

One way to interpret Contrastive Divergence is that it isragpnating the log-likelihood gradietacally
around the training point;. The stochastic reconstructian= x;1 (for CD-k) has a distribution (given
x1) which is in some sense centered arosndind becomes more spread out around & agreases, until
it becomes the model distribution. The GDupdate will decrease the free energy of the training print
(which would increase its likelihood if all the other freeeegies were kept constant), and increase the free
energy ofx, which is in the neighborhood of;. Note thatx is in the neighborhood af;, but at the same
time more likely to be in regions of high probability undeetmodel (especially fok larger). As argued
by LeCun et al. (2006), what is mostly needed from the trgjmilgorithm for an energy-based model is that
it makes the energy (free energy, here, to marginalize nigeldables) of observed inputs smaller, shoveling
“energy” elsewhere, and most importantly in areas of lowgyneThe Contrastive Divergence algorithm is
fueled by thecontrastbetween the statistics collected when the input is a reglitig.example and when
the input is a chain sample. As further argued in the nexi@®abtne can think of the unsupervised learning
problem as discovering a decision surface that can rougiggrate the regions of high probability (where
there are many observed training examples) from the regtreftre we want to penalize the model when it
generates examples on the wrong side of that divide, andéwgag to identify where that divide should be
moved is to compare training examples with samples from théah

A (37)

5.4.2 Alternatives to Contrastive Divergence

An exciting recent development in the research on learniggrithms for RBMs is use of a so-called
persistent MCMC for the negative phase (Tieleman, 2008alk®aitdinov & Hinton, 2009), following
an approach already introduced in Neal (1992). The ideaniplst keep a background MCMC chain
...x¢ — hy — x411 — hyyq ... to obtain the negative phase samples (which should be frermtidel).
Instead of running a short chain as in GDthe approximation made is that we ignore the fact that param
eters are changing as we move along the chain, i.e., we danat separate chain for each value of the
parameters (as in the traditional Boltzmann Machine legraigorithm). Maybe because the parameters
move slowly, the approximation works very well, usuallyigiy rise to better log-likelihood than CB{ex-
periments were against= 1 andk = 10). The trade-off with CD-1 is that the variance is larger Ina bias
is smaller. Something interesting also happens (Tielemétinfon, 2009): the model systematically moves
away from the samples obtained in the negative phase, amthteracts with the chain itself, preventing it
from staying in the same region very long, substantiallyrowng the mixing rate of the chain. This is a
very desirable and unforeseen effect, which helps to egptmre quickly the space of RBM configurations.
Another alternative to Contrastive Divergence is Scoredkliag (Hyvarinen, 2005, 2007b, 2007a), a
general approach to train energy-based models in whichrieegg can be computed tractably, but not

the normalization constar#f. The score function of a densipy(x) = ¢(x)/Z is ¢ = m%f(x), and we
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exploit the fact that the score function of our model doesdeyend on its normalization constant, i.e.,
Y = %. The basic idea is to match the score function of the moddi thié score function of the
empirical density. The average (under the empirical dgnheftthe squared norm of the difference between
the two score functions can be written in terms of squareseirtodel score function and second derivatives

%. Score matching has been shown to be locally consistentgtityan, 2005), i.e. converging if the

model family matches the data generating process, and téas used for unsupervised models of image
and audio data (Koster & Hyvarinen, 2007).

5.4.3 Truncations of the Log-Likelihood Gradient in Gibbs-Chain Models

Here we approach the Contrastive Divergence update rute &different perspective, which gives rise to
possible generalizations of it and links it to the recorcttaom error often used to monitor its performance
and that is used to optimize auto-encoders (eq. 9). Theratgm for this derivation comes from Hinton
et al. (2006): first from the idea (explained in Section 8tBttthe Gibbs chain can be associated with an
infinite directed graphical model (which here we associate an expansion of the log-likelihood gradient),
and second that the convergence of the chain justifies GaiveeDivergence (since the expected value of
eq. 37 becomes equivalent to eq. 19 when the chain satngdenes from the model). In particular we are
interested in clarifying and understanding the bias in tbat€stive Divergence update rule, compared to
using the true (intractable) gradient of the log-likelikdoo

Consider a converging Markov chaty = h; = x;;1; = ... defined by conditional distributions
P(hy|x;) and P(x¢+1|h;), with x; sampled from the training data empirical distribution. Taokowing
Theorem, demonstrated by Bengio and Delalleau (2009), sthmw one can expand the log-likelihood
gradient for any > 1.

Theorem 5.1. Consider the converging Gibbs chaih = h; = x; = h,... starting at data poini; .
The log-likelihood gradient can be written

dlog P(x1) _ OFreeEnergy(xi) i {aFreeEnergy(xt)] i {alog P(xt)}

00 N 00 00 00

(38)
and the final term converges to zerotagoes to infinity.

Since the final term becomes small iagcreases, that justifies truncating the chairktsteps in the
Markov chain, using the approximation

dlog P(x1)  OFreeEnergy(x) \E OFreeEnergy(x4+1)
06 N 06 06

which is exactly the CDe update (eq. 37) when we replace the expectation with a sgaglex = xj1.
This tells us that the bias of CB4is £ {%&ka} . Experiments and theory support the idea that &D-

yields better and faster convergence (in terms of numbeerdtions) than CO% — 1), due to smaller bias
(though the computational overhead might not always behitrit However, although experiments show
that the CDk bias can indeed be large whéris small, empirically the update rule of CBstill mostly
moves the model's parameters in the same quadrant as klgyikd gradient (Bengio & Delalleau, 2009).
This is in agreement with the good results can be obtained with £ = 1. An intuitive picture that may
help to understand the phenomenon is the following: wherirthet examplex; is used to initialize the
chain, even the first Markov chain step §g) tends to be in the right direction comparedkiq i.e. roughly
going down the energy landscape fram Since the gradient depends on the change betweemdx,
we tend to get the direction of the gradient right.

So CD-1 corresponds to truncating the chain after two sasr(plee fromh; |x;, and one fronxz|h,).
What about stopping after the first one (ile;|x1)? It can be analyzed from the following log-likelihood
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gradient expansion (Bengio & Delalleau, 2009):

dlog P(x1) 0log P(x1|hy) Olog P(hy)

00 = F 00 E 00 ' (39)
Let us consider a mean-field approximation of the first exqtéant, in which instead of the average over
all h; configurations according t&(h;|x;) one replaceé; by its average configuratidm, = E[h; |x4],
yielding:

£ [810gP(x1|h1)] o 810gP(x1|f11). (40)

00 00

If, as in CD, we then ignore the second expectation in eq.r&u(ring an additional bias in the estimation
of the log-likelihood gradient), we then obtain the rigladd side of eq. 40 as an update direction, which is
minus the gradient of theeconstruction erroy

—log P(x1|hy)

typically used to train auto-encoders (see eq. 9 with) = E[h|x]).

So we have found that the truncation of the Gibbs chain gigesto first approximation (one sample) to
roughly reconstruction error (through a biased mean-figft@ximation), with slightly better approximation
(two samples) to CD-1 (approximating the expectation byrapa), and with more terms to CR-(still
approximating expectations by samples). Note that recactsdn error is deterministically computed and
is correlated with log-likelihood, which is why it has beesed to track progress when training RBMs with
CD.

5.4.4 Model Samples Are Negative Examples

Here we argue that training an energy-based model can bevachby solving a series of classification
problems in which one tries to discriminate training exaespgrom samples generated by the model. In
the Boltzmann machine learning algorithms, as well as intfstive Divergence, an important element
is the ability tosample from the modetaybe approximately. An elegant way to understand theevaiu
these samples in improving the log-likelihood was intraethin Welling, Zemel, and Hinton (2003), using
a connection with boosting. We start by explaining the id€arimally and then formalize it, justifying
algorithms based on training the generative model with sstfi@gation criteriorseparating model samples
from training examplesThe maximum likelihood criterion wants the likelihood te high on the training
examples and low elsewhere. If we already have a model andanetwincrease its likelihood, the contrast
between where the model puts high probability (represelmyeshmples) and where the training examples
are indicates how to change the model. If we were able to appedely separate training examples from
model samples with a decision surface, we could increaséiHiod by reducing the value of the energy
function on one side of the decision surface (the side whenetare more training examples) and increasing
it on the other side (the side where there are more samples thie model). Mathematically, consider
the gradient of the log-likelihood with respect to the pagesens of theFreeEnergy(x) (or Energy(x) if

we do not introduce explicit hidden variables), given in 2. Now consider a highly regularized two-
class probabilistic classifier that will attempt to separaiining samples oP(x) from model samples of
P(x), and which is only able to produce an output probability) = P(y = 1|x) barely different frorr%
(hopefully on the right side more often than not). kék) = sigm(—a(x)), i.e., —a(x) is the discriminant
function or an unnormalized conditional log-probabiljust like the free energy. L& denote the empirical
distribution over(x, y) pairs, andP; the distribution ovex wheny = i. Assume thaP(y = 1) = P(y =

0) = 3, sothatvf, Ep[f(x,y)] = Ep [f(x, 1)]P(y = 1) + Ep [f(x,0)]P(y = 0) = 5(Ep [f(x,1)] +

121t is debatable whether or not one would take into accountfdbethath; depends o when computing the gradient in the
mean-field approximation of eq. 40, but it must be the caseaw @ direct link with auto-encoders.
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B [f(x,0)]). Using this, the average conditional log-likelihood geadtifor this probabilistic classifier is
written

g [OlePlylx) | _ o [9(ylogq(x) + (1 —y)log(l —¢(x)))
P[ 90 ] P{ 00 }
- (o128 52
~ 3 (-Eﬁl {a‘;(e )] + By, PC;(@X)D (41)

where the last equality is when the classifier is highly ragméd: when the output weights are smallx)

is close to 0 and/(x) ~ 1, so that(l — ¢(x)) =~ ¢(x). This expression for the log-likelihood gradient
corresponds exactly to the one obtained for energy-baseélsahere the likelihood is expressed in terms
of a free energy (eq. 20), when we interpret training examfrlem P, as positive exampleg (= 1) (i.e.
P, = P) and model samples as negative exampies:(0, i.e. P, = P). The gradient is also similar in
structure to the Contrastive Divergence gradient estimatp 37). One way to interpret this result is that if
we could improve a classifier that separated training sasripden model samples, we could improve the log-
likelihood of the model, by putting more probability masstbe side of training samples. Practically, this
could be achieved with a classifier whose discriminant fionat/as defined as the free energy of a generative
model (up to a multiplicative factor), and assuming one daldtain samples (possibly approximate) from
the model. A particular variant of this idea has been useddtify a boosting-like incremental algorithm for
adding experts in products of experts (Welling et al., 2003)

6 Greedy Layer-Wise Training of Deep Architectures
6.1 Layer-Wise Training of Deep Belief Networks

A Deep Belief Network (Hinton et al., 2006) withlayers models the joint distribution between observed
vectorx and/ hidden layers* as follows:

-2
P(x,h',... h) = <H P(hk|hk=+1)> P(h*~* n’) (42)

k=0

wherex = h°, P(h*~1|h*) is a visible-given-hidden conditional distribution in aBR associated with
level k& of the DBN, andP(h‘~! h*) is the joint distribution in the top-level RBM. This is illtrated in
Figure 11.

The conditional distribution®(h*|h**!) and the top-level joint (an RBMP(h‘~! h) define the gen-
erative model. In the following we introduce the leté@ifor exact or approximate posteriors of that model,
which are used for inference and training. TQeposteriors are all approximate except for the top level
Q(h*|h*~1) which is equal to the tru@(h*|h*~!) becauséh’, h*~!) form an RBM, where exact inference
is possible.

When we train the DBN in a greedy layer-wise fashion, astiated with the pseudo-code of Algo-
rithm 2, each layer is initialized as an RBM, and we der@th”, h*~!) the k-th RBM trained in this way,
whereasP(. ..) denotes probabilities according to the DBN. We will 3¢h*|h*~1) as an approximation
of P(h*|h*~1), because it is easy to compute and sample feafh”* |h*~!) (which factorizes), and not
from P(h*|h*~1) (which does not). Thes@(h*/h*~!) can also be used to construct a representation of
the input vectox. To obtain an approximate posterior or representation lfdha levels, we use the fol-
lowing procedure. First sample! ~ Q(h'!|x) from the first-level RBM, or alternatively with a mean-field
approach usal = E[h!|x] instead of a sample df!, where the expectation is over the RBM distribution
Q(h'|x). This is just the vector of output probabilities of the hiddeits, in the common case where they
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Algorithm 2

Tr ai nUnsuper vi sedDBN(ﬁ,e,é,W,b,c, mean_fi el d_conput ati on)

Train a DBN in a purely unsupervised way, with the greedyrayise procedure in which each added layer
is trained as an RBM (e.g. by Contrastive Divergence).

P is the input training distribution for the network

e is a learning rate for the RBM training

£ is the number of layers to train

W* is the weight matrix for levek, for k from 1 to/

b* is the visible units offset vector for RBM at levie] for & from 1 to/

c” is the hidden units offset vector for RBM at levglfor k& from 1 to/¢

nmean_fi el d_conput at i on is a Boolean that is true iff training data at each additidexa| is obtained
by a mean-field approximation instead of stochastic samplin

for k=1to¢do
e initialize W* = 0,b* = 0,c* =0
while not stopping criteriomlo
e sampleh?® = x from P
fori=1tok —1do
if mrean_fi el d_conputation then
e assign h! to Q(hj=1h"""), for all elements j of h’

el se
e sanple h! from Q(hi[h’~"), for all elements j of h’
end if
end for
e RBMupdat e(h*~1 ¢, W* b c*) {thus providingl (h*|h*~1) for future useé
end while
end for
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Figure 11: Deep Belief Network as a generative model (geiwverpath with P distributions, full arcs) and a
means to extract multiple levels of representation of tipeiirfrecognition path witld) distributions, dashed
arcs). The top two layerk? andh?® form an RBM (for their joint distribution). The lower layeferm a
directed graphical model (sigmoid belief i€t = h' = x) and the prior for the penultimate layh? is
provided by the top-level RBMQ (h**+1|h*) approximates(h*+!|h*) but can be computed easily.

are binomial unitsth! = sigm(b! + Wx). Taking either the mean-field vecthr or the sampléh! as
input for the second-level RBM, comp@ or a sampléh?, etc. until the last layer. Once a DBN is trained
as per Algorithm 2, the parametdiis’ (RBM weights) anct? (RBM hidden unit offsets) for each layer can
be used to initialize a deep multi-layer neural network. Sehgarameters can then be fine-tuned with respect

to another criterion (typically a supervised learningemiin).
A sample of the DBN generative model fercan be obtained as follows:

1. Sample a visible vectdr‘—! from the top-level RBM. This can be achieved approximatglyunning
a Gibbs chain in that RBM alternating betwekh ~ P(h‘[h‘~!) andh’~! ~ P(h‘!|h?), as
outlined in Section 5.3.1. By starting the chain from a repreatiorh’~! obtained from a training
set example (through th@’s as above), fewer Gibbs steps might be required.

2. Fork = /—1downto 1, sampl&*~! givenh* according to the levet-hidden-to-visible conditional
distribution P (h*~1|h*).

3. x = h? is the DBN sample.

6.2 Training Stacked Auto-Encoders

Auto-Encoders have been used as building blocks to buildimitidlize a deep multi-layer neural net-
work (Bengio et al., 2007; Ranzato et al., 2007; Larochdlia.e 2007; Vincent et al., 2008). The training
procedure is similar to the one for Deep Belief Networks:

1. Train the first layer as an auto-encoder to minimize sonma fif reconstruction error of the raw input.
This is purely unsupervised.

2. The hidden units’ outputs (i.e. the codes) of the autmdacare now used as input for another layer,
also trained to be an auto-encoder. Again, we only need alddlexamples.
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3. lterate as in (2) to initialize the desired number of addal layers.

4. Take the last hidden layer output as input to a supervisger land initialize its parameters (either
randomly or by supervised training, keeping the rest of #tevork fixed).

5. Fine-tune all the parameters of this deep architectutie espect to the supervised criterion. Alter-
nately, unfold all the auto-encoders into a very deep antméer and fine-tune the global reconstruc-
tion error, as in Hinton and Salakhutdinov (2006b).

The hope is that the unsupervised pre-training in this grémgker-wise fashion has put the parameters of
all the layers in a region of parameter space from which a olodal optimum can be reached by local
descent. This indeed appears to happen in a number of taskgjiBet al., 2007; Ranzato et al., 2007;
Larochelle et al., 2007; Vincent et al., 2008).

The principle is exactly the same as the one previously megdor training DBNs, but using auto-
encoders instead of RBMs. Comparative experimental iesuljgest that Deep Belief Networks typically
have an edge over Stacked Auto-Encoders (Bengio et al.,; A0fYdchelle et al., 2007; Vincent et al.,
2008). This may be because GbDis closer to the log-likelihood gradient than the recongian error
gradient. However, since the reconstruction error grddias less variance than Cbbecause no sampling
is involved), it might be interesting to combine the twoeri, at least in the initial phases of learning. Note
also that the DBN advantage disappeared in experimentsvtherordinary auto-encoder was replaced by
a denoising auto-encoder (Vincent et al., 2008), whichadstsdstic (see Section 7.2).

An advantage of using auto-encoders instead of RBMs as thepenvised building block of a deep
architecture is that almost any parametrization of therky® possible, as long as the training criterion
is continuous in the parameters. On the other hand, the ofagsobabilistic models for which CD or
other known tractable estimators of the log-likelihooddieat can be applied is currently more limited. A
disadvantage of Stacked Auto-Encoders is that they do meggmond to a generative model: with generative
models such as RBMs and DBNs, samples can be drawn to chelifatively what has been learned, e.g.,
by visualizing the images or word sequences that the modslaplausible.

6.3 Semi-Supervised and Partially Supervised Training

With DBNs and Stacked Auto-Encoders two kinds of trainirgnsils are available, and can be combined:
the local layer-wise unsupervised training signal (froe BRBM or auto-encoder associated with the layer),
and a global supervised training signal (from the deep raj&r network sharing the same parameters
as the DBN or Stacked Auto-Encoder). In the algorithms priegskabove, the two training signals are
used in sequence: first an unsupervised training phase,emotid a supervised fine-tuning phase. Other
combinations are possible.

One possibility is to combine both signals during trainiagd this is called partially supervised training
in Bengio et al. (2007). It has been found useful (Bengio €2&07) when the true input distributid( X )
is believed to be not strongly related R{Y | X'). To make sure that an RBM preserves information relevant
toY inits hidden representation, the CD update is combinedthéltlassification log-probability gradient,
and for some distributions better predictions are thusiobth

An appealing generalization of semi-supervised learresgecially in the context of deep architectures,
is self-taught learningLee, Battle, Raina, & Ng, 2007; Raina et al., 2007), in whiehiunlabeled examples
potentially come from classes other than the labeled dasHeis is more realistic than the standard semi-
supervised setting, e.g., even if we are only interestedmesspecific object classes, one can much more
easily obtain unlabeled examples of arbitrary objects fioeweb (whereas it would be expensive to select
only those pertaining to those selected classes of injerest

13Good at least in the sense of generalization.
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7 Variants of RBMs and Auto-Encoders

We review here some of the variations that have been propms#tk basic RBM and auto-encoder models
to extend and improve them.

We have already mentioned that it is straightforward to gaize the conditional distributions associated
with visible or hidden units in RBMs, e.g., to any member af #xponential family (Welling et al., 2005).
Gaussian units and exponential or truncated exponentitd have been proposed or used in Freund and
Haussler (1994), Welling et al. (2003), Bengio et al. (20Q&rochelle et al. (2007). With respect to the
analysis presented here, the equations can be easily ddap®mply changing the domain of the sum
(or integral) for theh; andx;. Diagonal quadratic terms (e.g., to yield Gaussian or et Gaussian
distributions) can also be added in the energy function autHosing the property that the free energy
factorizes.

7.1 Sparse Representations in Auto-Encoders and RBMs

Sparsity has become a concept of great interest recentlygnhoin machine learning but also in statistics and
signal processing, in particular with the work on comprdssmnsing (Candes & Tao, 2005; Donoho, 2006),
but it was introduced earlier in computational neuroscgeimcthe context of sparse coding in the visual
system (Olshausen & Field, 1997), and has been a key elemreept abnvolutional networks exploiting
of a variant of auto-encoders (Ranzato et al., 2007, 200z&a & LeCun, 2007; Ranzato et al., 2008;
Mairal et al., 2009) with a sparse distributed represemtatind has become a key ingredient in Deep Belief
Networks (Lee et al., 2008).

7.1.1 Why a Sparse Representation?

We argue here that if one is going to have fixed-size repratens, then sparse representations are more
efficient (than non-sparse ones) in an information-théosennse, allowing for varying the effective number
of bits per example. According to learning theory (Vapni®9%; Li & Vitanyi, 1997), to obtain good
generalization it is enough that the total number of bitsdeeeto encode thevhole training sebe small,
compared to the size of the training set. In many domainstefast different examples require different
number of bits when compressed.

On the other hand, dimensionality reduction algorithmsetluar linear such as PCA and ICA, or non-
linear such as LLE and Isomap, map each example to the sardifognsional space. In light of the above
argument, it would be more efficient to map each example taiable-length representation. To simplify
the argument, assume this representation is a binary veétae are required to map each example to a
fixed-length representation, a good solution would be tamsbdhat representation to have enough degrees
of freedom to represent the vast majority of the exampledgvalhthe same allowing to compress that fixed-
length bit vector to a smaller variable-size code for moshefexamples. We now have two representations:
the fixed-length one, which we might use as input to make ptietis and make decisions, and a smaller,
variable-size one, which can in principle be obtained fromfixed-length one through a compression step.
For example, if the bits in our fixed-length representatientar have a high probability of being O (i.e. a
sparsity condition), then for most examples it is easy tom@ss the fixed-length vector (in average by the
amount of sparsity). For a given level of sparsity, the nundfeonfigurations of sparse vectors is much
smaller than when less sparsity (or none at all) is imposethesentropy of sparser codes is smaller.

Another argument in favor of sparsity is that the fixed-léngipresentation is going to be used as input
for further processing, so that it should be easy to intérggdighly compressed encoding is usually highly
entangled, so that no subset of bits in the code can reallytbgpreted unless all the other bits are taken into
account. Instead, we would like our fixed-length sparseasgmtation to have the property that individual
bits or small subsets of these bits can be interpretedcoeespond to meaningful aspects of the input, and
capture factors of variation in the data. For example, wiip@ech signal as input, if some bits encode the
speaker characteristics and other bits encode generigrésanf the phoneme being pronounced, we have
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disentangled some of the factors of variation in the datd,smme subset of the factors might be sufficient
for some particular prediction tasks.

Another way to justify sparsity of the representation waspised in Ranzato et al. (2008), in the con-
text of models based on auto-encoders. This view actuapyagxs how one might get good models even
though the partition function is not explicitly minimizeak, only minimized approximately, as long as other
constraints (such as sparsity) are used on the learnedsespiation. Suppose that the representation learned
by an auto-encoder is sparse, then the auto-encoder canooistruct well every possible input pattern, be-
cause the number of sparse configurations is necessarillesthan the number of dense configurations. To
minimize the average reconstruction error on the traingigtee auto-encoder then has to find a representa-
tion which captures statistical regularities of the dawriiution. First of all, Ranzato et al. (2008) connect
the free energy with a form of reconstruction error (when m@aces summing over hidden unit configu-
rations by maximizing over them). Minimizing reconstractierror on the training set therefore amounts to
minimizing free energy, i.e., maximizing the numerator wesaergy-based model likelihood (eq. 17). Since
the denominator (the partition function) is just a sum ofribenerator over all possible input configurations,
maximizing likelihood roughly amounts to making reconstion error high for most possible input config-
urations, while making it low for those in the training sehig can be achieved if the encoder (which maps
an input to its representation) is constrained in such a Wayit cannot represent well most of the possible
input patterns (i.e., the reconstruction emaust be higtior most of the possible input configurations). Note
how this is already achieved when the code is much smallertti&input. Another approach is to impose a
sparsity penalty on the representation (Ranzato et al8)2@fhich can be incorporated in the training crite-
rion. In this way, the term of the log-likelihood gradiensasiated with the partition function is completely
avoided, and replaced by a sparsity penalty on the hiddércodé. Interestingly, this idea could potentially
be used to improve CR-RBM training, which only uses aapproximateestimator of the gradient of the
log of the partition function. If we add a sparsity penaltythie hidden representation, we may compensate
for the weaknesses of that approximation, by making surenarease the free energy of most possible input
configurations, and not only of the reconstructed neighbbthe input example that are obtained in the
negative phase of Contrastive Divergence.

7.1.2 Sparse Auto-Encoders and Sparse Coding

There are many ways to enforce some form of sparsity on thaehithyer representation. The first success-
ful deep architectures exploiting sparsity of represémainvolved auto-encoders (Ranzato et al., 2007).
Sparsity was achieved with a so-called sparsifying logidty which the codes are obtained with a nearly
saturating logistic whose offset is adapted to maintaimeaeerage number of times the code is significantly
non-zero. One year later the same group introduced a soneimtaler variant (Ranzato et al., 2008) based
on a Student-t prior on the codes. The Student-t prior has bsed in the past to obtain sparsity of the MAP
estimates of the codes generating an input (Olshausen &,Ri897) in computational neuroscience models
of the V1 visual cortex area. Another approach also condgocteomputational neuroscience involves two
levels of sparse RBMs (Lee et al., 2008). Sparsity is acklievith a regularization term that penalizes a
deviation of the expected activation of the hidden unitefifixed low level. Whereas Olshausen and Field
(1997) had already shown that one level of sparse coding af@s led to filters very similar to those seen
in V1, Lee et al. (2008) find that when training a sparse DedgBdetwork (i.e. two sparse RBMs on top
of each other), the second level appears to learn to detacaMieatures similar to those observed in area
V2 of visual cortex (i.e., the area that follows area V1 int@n chain of processing of the visual cortex of
primates).

In the compressed sensing literature sparsity is achievdidtiae ¢; penalty on the codes, i.e., given
bases in matri¥V (each column ofV is a basis) we typically look for codéssuch that the input signal
is reconstructed with low, reconstruction error whilé is sparse:

min [[x — Wh[3 + Al|h||, (43)
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where||h||; = ", |h;|. The actual number of non-zero componenthafould be given by thé, norm,

but minimizing with it is combinatorially difficult, and th@ norm is the closegi-norm that is also convex,
making the overall minimization in eq. 43 convex. As is nowlwaderstood (Candes & Tao, 2005; Donoho,
2006), the/; norm is a very good proxy for th& norm and naturally induces sparse results, and it can even
be shown taecover exactlyhe true sparse code (if there is one), under mild conditibitgte that the/y
penalty corresponds to a Laplace prior, and that the postéoies not have a point mass at 0, but because
of the above properties, theodeof the posterior (which is recovered when minimizing eq. ¥3)ften at

0. Although minimizing eq. 43 is convex, minimizing jointthe codes and the decoder bagEss not
convex, but has been done successfully with many diffedgorighms (Olshausen & Field, 1997; Lewicki

& Sejnowski, 2000; Doi et al., 2006; Grosse, Raina, Kwong, & R007; Raina et al., 2007; Mairal et al.,
2009).

Like directed graphical models (such as the sigmoid belkgfvorks discussed in Section 4.4), sparse
coding performs a kind aéxplaining awayit chooses one configuration (among many) of the hiddensode
that could explain the input. These different configuratsicompete, and when one is selected, the others
are completely turned off. This can be seen both as an adyaatad as a disadvantage. The advantage
is that if a cause is much more probable than the other, thigrtlie one that we want to highlight. The
disadvantage is that it makes the resulting codes somewbtghle, in the sense that small perturbations of
the inputx could give rise to very different values of the optimal cadeThis instability could spell trouble
for higher levels of learned transformations or a trainedsifier that would takk as input. Indeed it could
make generalization more difficult if very similar inputsncand up being represented very differently in
the sparse code layer. There is also a computational wesbfidlsese approaches that some authors have
tried to address. Even though optimizing eq. 43 is efficieaan be hundreds of time slower than the kind
of computation involved in computing the codes in ordinamyoaencoders or RBMs, making both training
and recognition very slow. Another issue connected to thieilitly question is the joint optimization of the
basedV with higher levels of a deep architecture. This is partidylanportant in view of the objective of
fine-tuning the encoding so that it focuses on the most digcent aspects of the signal. As discussed in
Section 9.1.2, significant classification error improvetagvere obtained when fine-tuning all the levels of a
deep architecture with respect to a discriminant critedbimterest. In principle one can compute gradients
through the optimization of the codes, but if the result & dptimization is unstable, the gradient may not
exist or be numerically unreliable. To address both thel#falssue and the above fine-tuning issue, Bagnell
and Bradley (2009) propose to replace thepenalty by a softer approximation which only gives rise to
approximately sparse coefficients (i.e., many very smaffagents, without actually converging to 0).

Keep in mind that sparse auto-encoders and sparse RBMs daoiff@t from any of these sparse coding
issues: computational complexity (of inferring the codes$ability of the inferred codes, and numerical
stability and computational cost of computing gradientstioa first layer in the context of global fine-
tuning of a deep architecture. Sparse coding systems onyrize the decoder: the encoder is defined
implicitly as the solution of an optimization. Instead, adioary auto-encoder or an RBM has an encoder
part (computing?(h|x)) and a decoder part (computififx|h)). A middle ground between ordinary auto-
encoders and sparse coding is proposed in a series of papsparse auto-encoders (Ranzato et al., 2007,
2007; Ranzato & LeCun, 2007; Ranzato et al., 2008) appligditern recognition and machine vision tasks.
They propose to let the codbhse free (as in sparse coding algorithms), but include a petré&arencoder (as
in ordinary auto-encoders and RBMs) and a penalty for tHerdihce between the free non-parametric codes
h and the outputs of the parametric encoder. In this way, thiengped codedh try to satisfy two objectives:
reconstruct well the input (like in sparse coding), while being too far from the output of the encoder
(which is stable by construction, because of the simplerpatazation of the encoder). In the experiments
performed, the encoder is just an affine transformatiorofadld by a non-linearity like the sigmoid, and
the decoder is linear as in sparse coding. Experiments dhathe resulting codes work very well in the
context of a deep architecture (with supervised fine-tunjRgnzato et al., 2008), and are more stable (e.qg.
with respect to slight perturbations of input images) thades obtained by sparse coding (Kavukcuoglu,
Ranzato, & LeCun, 2008).
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7.2 Denoising Auto-Encoders

The denoising auto-encoder (Vincent et al., 2008) is a sistahversion of the auto-encoder where the input
is stochastically corrupted, but the uncorrupted inputiisused as target for the reconstruction. Intuitively,
a denoising auto-encoder does two things: try to encodethé {preserve the information about the input),
and try to undo the effect of a corruption process stochaltiapplied to the input of the auto-encoder. The
latter can only be done by capturing the statistical depecids between the inputs. In fact, in Vincent et al.
(2008), the stochastic corruption process consists inaahgsetting some of the inputs (as many as half of
them) to zero. Hence the denoising auto-encoder is tryipggdict the missing values from the non-missing
values, for randomly selected subsets of missing patt@imestraining criterion for denoising auto-encoders
is expressed as a reconstruction log-likelihood,

—log P(x|c(x)) (44)

wherex is the uncorrupted inpuk is the stochastically corrupted input, ank) is the code obtained from
%. Hence the output of the decoder is viewed as the parametaefabove distribution (over the uncorrupted
input). In the experiments performed (Vincent et al., 2084} distribution is factorized and binomial (one
bit per pixel), and input pixel intensities are interpretestprobabilities. Note that a recurrent version of the
denoising auto-encoder had been proposed earlier by S&aa§); with corruption also corresponding to a
form of occlusion (setting a rectangular region of the inpuage to 0). Using auto-encoders for denoising
was actually introduced much earlier (LeCun, 1987; GallinaeCun, Thiria, & Fogelman-Soulie, 1987).
The main innovation in Vincent et al. (2008) is therefore how how this strategy is highly successful as
unsupervised pre-training for a deep architecture, anihtothe denoising auto-encoder to a generative
model.

Consider a randori-dimensional vectoX, S a set oft indices,Xs = (Xg,, ... Xg, ) the sub-elements
selected bys, and letX _ g all the sub-elements except thoseSinNote that the set of conditional distribu-
tions P(X s/ X _s) for some choices of fully characterize the joint distributioR (X ), and this is exploited
for example in Gibbs sampling. Note that bad things can hapgeen|S| = 1 and some pairs of input
are perfectly correlated: the predictions can be perfeehalrough the joint has not really been captured,
and this would correspond to a Gibbs chain that does not néx, does not converge. By considering
random-size subsets and also insisting on reconstructienything (like ordinary auto-encoders), this type
of problem may be avoided in denoising auto-encoders.

Interestingly, in a series of experimental comparisong @ eision tasks, stacking denoising auto-
encoders into a deep architecture fine-tuned with respegtdiopervised criterion yielded generalization
performance that was systematically better than stackidmary auto-encoders, and comparable or supe-
rior to Deep Belief Networks (Vincent et al., 2008).

An interesting property of the denoising auto-encoderas ithcan be shown to correspond to a genera-
tive model. Its training criterion is a bound on the log-likeod of that generative model. Several possible
generative models are discussed in (Vincent et al., 2008in#®le generative model is semi-parametric:
sample a training example, corrupt it stochastically, apipé encoder function to obtain the hidden repre-
sentation, apply the decoder function to it (obtaining peeters for a distribution over inputs), and sample
an input. This is not very satisfying because it requiresgepkthe training set around (like non-parametric
density models). Other possible generative models ar@eegbin Vincent et al. (2008).

Another interesting property of the denoising auto-encasl¢hat it naturally lends itself to data with
missing values or multi-modal data (when a subset of the fitm$amay be available for any particular
example). This is because ittisined with inputs that have “missing” parts (when corruption detssin
randomly hiding some of the input values).

7.3 Lateral Connections

The RBM can be made slightly less restricted by introducitigraction terms or “lateral connections” be-
tween visible units. Sampling from P(h|x) is still easy but sampling from P(x|h) is now generally
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more difficult, and amounts to sampling from a Markov RandaehdRwvhich is also a fully observed Boltz-
mann machine, in which the offsets are dependent on the @élhe Osindero and Hinton (2008) propose
such a model for capturing image statistics and their resuiggest that Deep Belief Nets (DBNs) based on
such modules generate more realistic image patches thars DB&&d on ordinary RBMs. Their results also
show that the resulting distribution has marginal and piaivstatistics for pixel intensities that are similar
to those observed on real image patches.

These lateral connections capture pairwise dependemeiesdan be more easily captured this way than
using hidden units, saving the hidden units for capturirggpbr-order dependencies. In the case of the first
layer, it can be seen that this amounts to a form of whitenirgch has been found useful as a preprocessing
step in image processing systems (Olshausen & Field, 199%).idea proposed by Osindero and Hinton
(2008) is to use lateral connections at all levels of a DBNi¢Wwltan now be seen as a hierarchy of Markov
random fields). The generic advantage of this type of approamuld be that the higher level factors rep-
resented by the hidden units do not have to encode all thé“idetails” that the lateral connections at the
levels below can capture. For example, when generating agerof a face, the approximate locations of the
mouth and nose might be specified at a high level whereasphasise location could be selected in order
to satisfy the pairwise preferences encoded in the lateraiections at a lower level. This appears to yield
generated images with sharper edges and generally moreaagadn the relative locations of parts, without
having to expand a large number of higher-level units.

In order to sample fron®(x|h), we can start a Markov chain at the current example (whichuymably
already has pixel co-dependencies similar to those repieddy the model, so that convergence should be
quick) and only run a short chain on tlés (keepingh fixed). DenotelU the square matrix of visible-to-
visible connections, as per the general Boltzmann Machieegy function in eq. 25. To reduce sampling
variance in CD for this model, Osindero and Hinton (2008usee damped mean-field steps instead of an
ordinary Gibbs chain on the's: x, = ax;—1 + (1 — «a)sigm(b + Ux;_1 + W'h), with a € (0, 1).

7.4 Conditional RBMs and Temporal RBMs

A Conditional RBMs an RBM where some of the parameters are not free but aeashgarametrized func-
tions of a conditioning random variable. For example, cdesan RBM for the joint distributiotP(x, h)
between observed vectarand hidden vectds, with parametergb, ¢, W) as per eq. 25, respectively for in-
put offsetsb, hidden units offsets, and the weight matriX/. This idea has been introduced by Taylor et al.
(2007), Taylor and Hinton (2009) for context-dependent RBMwhich the hidden units offsetsare affine
functions of a context variabte Hence the RBM represeniy x, h|z) or, marginalizing oveh, P(x|z). In
general the parametets= (b, ¢, W) of an RBM can be written as a parametrized functiea f(z;w), i.e.,
the actual free parameters of the conditional RBM with ctioding variablez are denoted. Generalizing
RBMs to conditional RBMs allows building deep architectiine which the hidden variables at each level
can be conditioned on the value of other variables (typicgalbresenting some form of context).

The Contrastive Divergence algorithm for RBMs can be eagiigeralized to the case of Conditional
RBMs. The CD gradient estimatdyf on a parametet can be simply back-propagated to obtain a gradient
estimator onw: 50

Aw = A—. (45)
Oow

In the affine case = § + Mz (with ¢, 5 andz column vectors and/ a matrix) studied by Taylor et al.
(2007), the CD update on the conditional parameters is gimpl

A = Ac
AM = AcZ (46)

where the last multiplication is an outer product (applytimgchain rule on derivatives), adxt is the update
given by CD% on hidden units offsets.
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Xt—2 Xi-1 X

Figure 12: Example of Temporal RBM for modeling sequentegthd including dependencies between the
hidden states. The double-arrow full arcs indicate an ewotid connection, i.e. an RBM. The single-arrow
dotted arcs indicate conditional dependency:(theh,) RBM is conditioned by the values of the pastinputs
and past hidden state vectors.

This idea has been successfully applied to model conditidist&ributions P (x;|x;—1,x¢—2, X;—3) in
sequential data of human motion (Taylor et al., 2007), whgres a vector of joint angles and other ge-
ometric features computed from motion capture data of humawements such as walking and running.
Interestingly, this allowgieneratingrealistic human motiosequencesby successively sampling theth
frame given the previously samplédrames, i.e. approximating

T

P(x1,Xg,...,x7) ~ P(x1,...Xg) H P(x¢|x¢—1,-- - Xt—k)- (47)
t=k+1

The initial frames can be generated by using special nullesbs context or using a separate model for
P(x1,...Xg).

As demonstrated by Memisevic and Hinton (2007), it can béulise make not just the offsets but also
the weights conditional on a context variable. In that casegweatly increase the number of degrees of
freedom, introducing the capability to model three-wagrattions between an input uiif, a hidden unit
h;, and a context unit;, through interaction parametefs,. This approach has been used withn image
andz the previousimage in a video, and the model learns to cafiawdields(Memisevic & Hinton, 2007).

Probabilistic models of sequential data with hidden vdeiah, (calledstate can gain a lot by capturing
the temporal dependencies between the hidden states aettedifftimest in the sequence. This is what
allowsHidden Markov Model§HMMs) (Rabiner & Juang, 1986) to capture dependenciesan@bbserved
sequences, Xs, . .. even if the model only considers the hidden state sequende,, . .. to be a Markov
chain of order 1 (where the direct dependence is only betgeandh; ;). Whereas the hidden state
representatiom,; in HMMs is local (all the possible values di; are enumerated and specific parameters
associated with each of these valud®mporal RBMdiave been proposed (Sutskever & Hinton, 2007) to
construct a distributed representation of the state. Témiglan extension of the Conditional RBM presented
above, but where the context includes not only past inputsilso past values of the state, e.g., we build a
model of

P(ht,xt|ht_1,xt_1,...,ht_k,,xt_k) (48)

where the context ig; = (h;—1,x;—1,...,h;_x,x;_), as illustrated in Figure 12. Although sampling
of sequences generated by Temporal RBMs can be done as intiGoadRBMs (with the same MCMC
approximation used to sample from RBMs, at each time step)sténference of the hidden state sequence
given an input sequence is no longer tractable. Insteadsk&er and Hinton (2007) propose to use a
mean-field filtering approximation of the hidden sequencsqror.
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7.5 Factored RBMs

In several probabilistic language models, it has been megoo learn a distributed representation of each
word (Deerwester, Dumais, Furnas, Landauer, & Harshma®Q;1®iikkulainen & Dyer, 1991; Bengio
et al., 2001, 2003; Schwenk & Gauvain, 2002; Xu et al., 20@Bw&nk, 2004; Schwenk & Gauvain, 2005;
Collobert & Weston, 2008; Mnih & Hinton, 2009). For an RBM thmodels a sequence of words, it would
be convenient to have a parametrization that leads to atitatia learning a distributed representation
for each word in the vocabulary. This is essentially what Maind Hinton (2007) propose. Consider an
RBM input x that is the concatenation of one-hot vectegsfor each wordw; in a fixed-size sequence
(w1, we,...,wg), i.e., v¢ contains all 0’s except for a 1 at positian, andx = (v{,v5,...,v,). Mnih
and Hinton (2007) use a factorization of the RBM weight mal#i into two factors, one that depends on
the locationt in the input subsequence, and one that does not. Consideothputation of the hidden
units’ probabilities given the input subsequerfeg, vo, ..., vy). Instead of applying directly a matri®

to x, do the following. First, each word symbwo} is mapped through a matrit to ad-dimensional vector
R ., = Rvy, fort € {1...k}, second, the concatenated vectoks , , R’ ,,,..., R, ) are multiplied
by a matrixB. HenceW = BDiag(R), whereDiag(R) is a block-diagonal matrix filled wittR on the
diagonal. This model has produced n-grams with betterilagihood (Mnih & Hinton, 2007, 2009), with
further improvementsin generalization performance whemnaging predictions with state-of-the-art n-gram
models (Mnih & Hinton, 2007).

7.6 Generalizing RBMs and Contrastive Divergence

Let us try to generalize the definition of RBM so as to includarge class of parametrizations for which
essentially the same ideas and learning algorithms (su€Clmasastive Divergence) that we have discussed
above can be applied in a straightforward way. We generBIERs as follows: aGeneralized RBNs an
energy-based probabilistic model with input vectoand hidden vectoh whose energy function is such
that P(h|x) and P(x|h) both factorize. This definition can be formalized in termshef parametrization of
the energy function, which is also proposed by Hinton et2006):

Proposition 7.1. The energy function associated with a model of the form oflBauch thatP(h|x) =
[[; P(hi|x) and P(x|h) = ][, P(x;h) must have the form

Energy(x,h) = > d;(x;) + Y &i(ha) + > (b, x;). (49)
i i i

This is a direct application of the Hammersley-Clifforddinem (Hammersley & Clifford, 1971; Clifford,
1990). Hinton et al. (2006) also showed that the above formmiscessary and sufficient condition to obtain
complementary priors Complementary priors allow the posterior distributifih|x) to factorize by a
proper choice o (h).

In the case where the hidden and input values are binarynévisformulation does not actually bring
any additional power of representation. Indegd;(h;,x;), which can take at most four different values
according to the x 2 configurations ofh;, x;) could always be rewritten as a second order polynomial in
(hi,x;): a + bx; + ch; + dh;x;. Howeverb andc can be folded into the offset terms amdhto a global
additive constant which does not matter (because it getsetlad by the partition function).

On the other hand, whex or h are real vectors, one could imagine higher-capacity mogdedf the
(h;, x;) interaction, possibly non-parametric, e.g., graduallgiad terms ton; ; so as to better model the
interaction. Furthermore, sampling from the conditionesitiesP(x;|h) or P(h;|x) would be tractable
even if then; ; are complicated functions, simply because these are 1rdimeal densities from which
efficient approximate sampling and numerical integratimeasy (e.g., by computing cumulative sums of
the density over nested sub-intervals or bins).

This analysis also highlights the basic limitation of RBMghich is that its parametrization only con-
siders pairwise interactions between variables. It is beedheh are hidden and because we can choose
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the number of hidden units, that we still have full expresgiower over possible marginal distributions in
x (in fact we can represent any discrete distribution (Le R&uBengio, 2008)). Other variants of RBMs
discussed in Section 7.4 allow three-way interactions (Mewic & Hinton, 2007).

What would be a Contrastive Divergence update in this gdémechRBM formulation? To simplify
notations we note that thg;’s and¢;’s in eq. 49 can be incorporated within thg;’s, so we ignore them in
the following. Theorem 5.1 can still be applied with

FreeEnergy(x) = —logZexp (— Zm,j (hi,xj)) .
h irj

The gradient of the free energy of a samglis thus

OFreeEnergy(x) Z exp <_ 2 m’j(hi’xj)) Zam,j(hi,xg')

26 b 2.h€XP (— > nz‘,j(flmxj)) i, 26
O (hy, %,
- 2:P(h|x)§:777 J(80 )
h

.7

By

X

$ i j(hi, x;)
00
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Thanks to Proposition 7.1, a Gibbs chain can still be runlyeadiruncating the log-likelihood gradient
expansion (eq. 38) aftérsteps of the Gibbs chain, and approximating expectatiotissaimples from this
chain, one obtains an approximation of the log-likelihooaldient at training poink; that depends only on
Gibbs samplek;, hy+1 andxy41:

dlog P(x1)  OFreeEnergy(xi) . OFreeEnergy(x4+1)
06 06 06

o~ (hixay) O j(Ngy1is Xpt1,5)
~ ( > e Z = x Ag

ij 0]

with A6 the update rule for parametét®f the model, corresponding to Cbin such a generalized RBM.
Note that in most parametrizations we would have a particliEment oy depend om; ;'s in such a way
that no explicit sum is needed. For instance (taking expiectaverh,.; instead of sampling) we recover
Algorithm 1 when

mig(hi, x;) = =Wijhix; — =~ — —
wheren,;, andn, are respectively the numbers of hidden and visible unitd,vaa also recover the other

variants described by Welling et al. (2005), Bengio et 00(@) for different forms of the energy and allowed
set of values for hidden and input units.

8 Stochastic Variational Bounds for Joint Optimization of DBN Lay-
ers
In this section we discuss mathematical underpinningsggafrghms for training a DBN as a whole. The log-

likelihood of a DBN can be lower bounded using Jensen’s infitpland as we discuss below, this can justify
the greedy layer-wise training strategy introduced in ¢btiret al., 2006) and described in Section 6.1. We
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will use eq. 42 for a DBN joint distribution, writingy for h! (the first level hidden vector) to lighten notation,
and introducing an arbitrary conditional distributi@th|x). First multiplylog P(x) by 1 = >, Q(h|x),

then useP(x) = ﬁg’;‘i; and multiply byl = 8%3}3 and expand the terms:

log P(x) <Z Q(hIX)> log P(x) = > | Q(hlx) log l;((ib}:))
h h

P(x, h) Q(hlx)
2. QI8 s Q)

Q(h[x)
P(hfx)

Hgnjx) + Z Q(h[x)log P(x,h) + Z Q(h[x)log
h h

KL(Q(h|x)||P(h|x)) + Hompx) + Y Q(hlx) (log P(h) + log P(x[h))  (50)
h

where Hynx) iS the entropy of the distributio® (h|x). Non-negativity of the KL divergence gives the
inequality

log P(x) > Hoemix) + > Q(h[x) (log P(h) + log P(x|h)), (51)
h

which becomes an equality whéhand@ are identical, e.g. in the single-layer case (i.e., an RBM)ereas
we have chosen to ugeto denote probabilities under the DBN, we «gd¢o denote probabilities under an
RBM (the first level RBM), and in the equations chod$¢h|x) to be the hidden-given-visible conditional
distribution of that first level RBM. We define that first le\®RBM such thai)(x|h) = P(x|h). In general
P(h|x) # Q(h|x). This is because although the margifih) on the first layer hidden vectér' = h is
determined by the upper layers in the DBN, the RBM margip@di) only depends on the parameters of the
RBM.

8.1 Unfolding RBMs into Infinite Directed Belief Networks

Before using the above decomposition of the likelihood siify the greedy training procedure for DBNSs,
we need to establish a connection betwggh') in a DBN and the corresponding margia(h') given by
the first level RBM. The interesting observation is that éhexists a DBN whosk' marginal equals the first
RBM'’s h! marginal, i.e.P(h') = Q(h'), as long the dimension f? equals the dimension &° = x. To
see this, consider a second-level RBM whose weight mattixdgranspose of the first-level RBM (that is
why we need the matching dimensions). Hence, by symmetiyeofdles of visible and hidden in an RBM
joint distribution (when transposing the weight matrixje tmarginal distribution over the visible vector of
the second RBM is equal to the marginal distributigth') of the hidden vector of the first RBM.

Another interesting way to see this is given by Hinton et2006): consider the infinite Gibbs sampling
Markov chain starting at = —oo and terminating at = 0, alternating betweer andh! for the first RBM,
with visible vectors sampled on everand hidden vectors on odd This chain can be seen as an infinite
directed belief network with tied parameters (all even stepe weight matriXy’’ while all odd ones use
weight matrixi¥’). Alternatively, we can summarize any sub-chain from —oc to t = 7 by an RBM with
weight matrixi¥ or W’ according to the parity of, and obtain a DBN witH — 7 layers (not counting the
input layer), as illustrated in Figure 13. This argumend akows that a 2-layer DBN in which the second
level has weights equal to the transpose of the first levayiieiis equivalent to a single RBM.

8.2 Variational Justification of Greedy Layer-wise Training

Here we discuss the argument made by Hinton et al. (2006atiding one RBM layer improves the like-
lihood of a DBN. Let us suppose we have trained an RBM to magelhich provides us with a model
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w RBM

RBM Xi-1

Figure 13: An RBM can be unfolded as an infinite directed lbekdwork with tied weights (see text). Left:
the weight matrixi¥’ or its transpose are used depending on the parity of the laglex. This sequence
of random variables corresponds to a Gibbs Markov chain tegdex; (for ¢ large). On the right, the
top-level RBM in a DBN can also be unfolded in the same waywéhg that a DBN is an infinite directed
graphical model in whiclsomeof the layers are tied (all except the bottom few ones).
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Q(x) expressed through two conditionagh'|x) and Q(x|/h'). Exploiting the argument in the previ-
ous subsection, let us now initialize an equivalent 2-1dyBN, i.e., generating’(x) = Q(x), by taking
P(x/h!) = Q(x|h!) and P(h', h?) given by a second-level RBM whose weights are the transpioseo
first-level RBM. Now let us come back to eq. 50 above, and theaive of improving the DBN likelihood by
changingP(ht!), i.e., keeping®(x|/h') andQ(h'|x) fixed but allowing the second level RBM to change. In-
terestingly, increasing the KL divergence teimreaseghe likelihood. Starting fron®(h'|x) = Q(h!|x),
the KL term is zero (i.e., can only increase) and the entrepymtin eq. 50 does not depend on the DBN
P(h'), so small improvements to the term wiff(h!) guarantee an increase liog P(x). We are also
guaranteed that further improvements of fagh!) term (i.e. further training of the second RBM, detailed
below) cannot bring the log-likelihood lower than it was dxef the second RBM was added. This is simply
because of the positivity of the KL and entropy terms: furthaining of the second RBM increases a lower
bound on the log-likelihood (eq. 51), as argued by Hintonl.et2906). This justifies training the second
RBM to maximize the second term, i.e., the expectation dwvetraining set op ", , Q(h'|x) log P(h').

The second-level RBM is thus trained to maximize

Y P(x)Q(h'[x)log P(h') (52)
x,hl

with respect taP(h'). This is the maximum-likelihood criterion for a model thees examplek! obtained
as marginal samples from the joint distributi®{x)Q(h!|x). If we keep the first-level RBM fixed, then
the second-level RBM could therefore be trained as follogeanplex from the training set, then sample
h! ~ Q(h'|x), and consider thai' as a training sample for the second-level RBM (i.e. as anrghten
for its 'visible’ vector). If there was no constraint d(h'), the maximizer of the above training criterion
would be its “empirical” or target distribution

Z P(x)Q(h![x). (53)

The same argument can be made to justify adding a third layer,We obtain the greedy layer-wise
training procedure outlined in Section 6.1. In practicergguirement that layer sizes alternate is not satis-
fied, and consequently neither is it common practice taailite the newly added RBM with the transpose of
the weights at the previous layer (Hinton et al., 2006; Bemggial., 2007), although it would be interesting
to verify experimentally (in the case where the size coidtisimposed) whether the initialization with the
transpose of the previous layer helps to speed up training.

Note that as we continue training the top part of the modedl (#as includes adding extra layers),
there is no guarantee thiig P(x) (in average over the training set) will monotonically inase. As our
lower bound continues to increase, the actual log-lik@thoould start decreasing. Let us examine more
closely how this could happen. It would require thid.(Q (h!|x)|| P(h!|x)) term to decrease as the second
RBM continues to be trained. However, this is unlikely in geat: as the DBN's”(h!) deviates more and
more from the first RBM's margina(h') onh!, it is likely that the posterior#(h'|x) (from the DBN)
andQ(h'|x) (from the RBM) deviate more and more (sinPéh’|x) « Q(x|/h!)P(h!) andQ(h!|x) o
Q(x/h')Q(h')), making the KL term in eq. 50 increase. As the training itkebd for the second RBM
increasesP(h') moves smoothly frong) (h') towardsP*(h'). Consequently, it seems very plausible that
continued training of the second RBM is going to increaseDB&’s likelihood (not just initially) and by
transitivity, adding more layers will also likely increatee DBN’s likelihood. However, it is not true that
increasing the training likelihood for the second RBM steyfrom any parameter configuration guarantees
that the DBN likelihood will increase, since at least onehpédgical counter-example can be found (I.
Sutskever, personal communication). Consider the caseavttie first RBM has very large hidden biases, so
thatQ(h'|x) = Q(h') = 1,,_; = P*(h'), but large weights and small visible offsets so tRék;|h) =
1x,=n;, i.€., the hidden vector is copied to the visible units. Wirgtializing the second RBM with the
transpose of the weights of the first RBM, the training likeldd of the second RBM cannot be improved,
nor can the DBN likelihood. However, if the second RBM waststfrom a “worse” configuration (worse
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in the sense of its training likelihood, and also worse instese of the DBN likelihood), theR(h') would
move towardsP*(h!) = Q(h'), making the second RBM likelihood improve while the KL ternowid
decrease and the DBN likelihood would decrease. These tomslicould not happen when initializing the
second RBM properly (with a copy of the first RBM). So it rensan open question whether we can find
conditions (excluding the above) which guarantee thatewthie likelihood of the second RBM increases,
the DBN likelihood also increases.

Another argument to explain why the greedy procedure waskihé following (Hinton, NIPS'2007
tutorial). The training distribution for the second RBM ifgalesh® from P*(h')) looks more like data
generated by an RBM than the original training distribut}%(nc). This is becaus®*(h') was obtained by
applying one sub-step of an RBM Gibbs chain on examples fRs), and we know that applying many
Gibbs steps would yield data from that RBM.

Unfortunately, when we train within this greedy layer-wig®cedure an RBM that will not be the top-
level level of a DBN, we are not taking into account the fa@ttmore capacity will be added later to
improve the prior on the hidden units. Le Roux and Bengio 80@ve proposed considering alternatives to
Contrastive Divergence for training RBMs destined to alitie intermediate layers of a DBN. The idea is to
consider that”(h) will be modeled with a very high capacity model (the higheels of the DBN). In the
limit case of infinite capacity, one can write down what thatimal P(h) will be: it is simply the stochastic
transformation of the empirical distribution through thechastic mapping) (h|x) of the first RBM (or
previous RBMs), i.e.P* of eq. 53 in the case of the second level. Plugging this batcktire expression
for log P(x), one finds that a good criterion for training the first RBM ig tL divergence between the
data distribution and the distribution of the stochasticorestruction vectors after one step of the Gibbs
chain. Experiments (Le Roux & Bengio, 2008) confirm that triterion yields better optimization of the
DBN (initialized with this RBM). Unfortunately, this critéon is not tractable since it involves summing
over all configurations of the hidden vecthr Tractable approximations of it might be considered, since
this criterion looks like a form of reconstruction error ostachastic auto-encoder (with a generative model
similar to one proposed for denoising auto-encoders (Vineeal., 2008)). Another interesting alternative,
explored in the next section, is to directly work on jointiogization of all the layers of a DBN.

8.3 Joint Unsupervised Training of All the Layers

We discuss here how one could train a whole deep architestiteas a DBN in an unsupervised way, i.e.
to represent well the input distribution.

8.3.1 The Wake-Sleep Algorithm

The Wake-Sleep algorithm (Hinton et al., 1995) was intredlio train sigmoidal belief networks (i.e. where
the distribution of the top layer units factorizes). It issbd on a “recognition” mode)(h|x) (along with
Q(x) set to be the training set distribution) that acts as a variat approximation to the generative model
P(h,x). Here we denote withh all the hidden layers together. In a DBi(h|x) is as defined above
(sec. 6.1), obtained by stochastically propagating sasnypavard (from input to higher layers) at each layer.
In the Wake-Sleep algorithm, we decouple the recogniticameaters (upward weights, used to compute
Q(h|x)) from the generative parameters (downward weights, usedrtputeP(x|h)). The basic idea of
the algorithm is simple:

1. Wake phase samplex from the training set, generate ~ Q(h|x) and use thigh,x) as fully
observed data for training(x|/h) and P(h). This corresponds to doing one stochastic gradient step
with respect to

> Q(hlx)log P(x, h). (54)
h
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2. Sleep phase sample(h, x) from the modelP(x, h), and use that pair as fully observed data for
training @ (h|x). This corresponds to doing one stochastic gradient stépredpect to

> P(h,x)log Q(h[x). (55)

h,x

The Wake-Sleep algorithm has been used for DBNs in Hintonl. é2@06), after the weights associated
with each layer have been trained as RBMs as discussedred&tiea DBN with layergh', ... h?), the
Wake phase updates for the weights of the top RBM (betiéeh andh?) is done by considering tHe/ !
sample (obtained fror (h|x)) as training data for the top RBM.

A variational approximation can be used to justify the W&teep algorithm. The log-likelihood decom-
position in eq. 50

log P(x) = KL(Q(hx)|[P(h]x)) + Hompx) + ) Q(h|x) (log P(h) + log P(x|h)) (56)
h

shows that the log-likelihood can be bounded from below leyajhposite of the Helmholtz free energy (Hin-
ton et al., 1995; Frey, Hinton, & Dayan, 1995)

log P(x) = KL(Q(h[x)[|P(h[x)) — F(x) > —F(x) (57)

where

F(x) = —Hompx) — . Q(hlx) (log P(h) + log P(x|h)) (58)

h

and the inequality is tight whe@@ = P. The variational approach is based on maximizing the loveemol
—F while trying to make the bound tight, i.eminimizing K L(Q (h|x)|| P(h|x)). When the bound is tight,
an increase of F'(x) is more likely to yield an increase tdg P(x). Since we decouple the parameters of
Q@ and of P, we can now see what the two phases are doing. In the Wake pleasensider fixed and
do a stochastic gradient step towards maximizing the egpegtiue off’'(x) over samplex of the training
set, with respect to parameters Bf(i.e. we do not care about the entropy®J. In the Sleep phase we
would ideally like to makey as close taP as possible in the sense of minimiziddL (Q (h|x)||P(h|x))
(i.e. taking@ as the reference), but instead we minimiZé (P (h, x)||Q(h, x)), taking P as the reference,
because{ L(Q(h|x)||P(h|x)) is intractable.

8.3.2 Transforming the DBN into a Boltzmann Machine

Another approach was recently proposed, yielding in théueted cases results superior to the use of the
Wake-Sleep algorithm (Salakhutdinov & Hinton, 2009). Afidtializing each layer as an RBM as already
discussed in section 6.1, the DBN is transformed into a epording deep Boltzmann machine. Because
in a Boltzmann machine each unit receives input from aboweedisas from below, it is proposed to halve
the RBM weights when initializing the deep Boltzmann maehiiom the layer-wise RBMs. It is very in-
teresting to note that the RBM initialization of the deept®wlann machine was crucial to obtain the good
results reported. The authors then propose approximatioriee positive phase and negative phase gra-
dients of the Boltzmann machine (see section 5.2 and eq.Rf)the positive phase (which in principle
requires holding fixed and sampling fron®(h|x)), they propose a variational approximation correspond-
ing to a mean-field relaxation (propagating probabilitissaziated with each unit given the others, rather
than samples, and iterating a few dozen times to let thereseffior the negative phase (which in principle
requires sampling from the joi®(h, x)) they propose to use the idea of a persistent MCMC chain@yjrea
discussed in section 5.4.1 and introduced in Tieleman (20D&e idea is to keep a set @, x) states (or
particles) that are updated by one Gibbs step accordingtoutirent model (i.e. sample each unit according
to its probability given all the others at the previous sté&p)en though the parameters keep changing (very
slowly), we continue the same Markov chain instead of stgréi new one (as in the old Boltzmann machine
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algorithm (Hinton et al., 1984; Ackley et al., 1985; Hinton&ejnowski, 1986)). This strategy seems to
work very well, and Salakhutdinov and Hinton (2009) repartimprovement over DBNs on the MNIST
dataset, both in terms of data log-likelihood (estimatédgiannealed importance sampling (Salakhutdinov
& Murray, 2008)) and in terms of classification error (aftepsrvised fine-tuning), bringing down the er-
ror rate from 1.2% to 0.95%. More recently, Lee et al. (2008 aransform the trained DBN into a deep
Boltzmann machine in order to generate samples from it, @nel the DBN has a convolutional structure.

9 Looking Forward

9.1 Global Optimization Strategies

As discussed Section 4.2, part of the explanation for theebgeneralization observed with layer-local
unsupervised pre-training in deep architectures could beelthat they help to better optimize the lower
layers (near the input), by initializing supervised tramiin regions of parameter space associated with
better unsupervised models. Similarly, initializing edaher of a deep Boltzmann machine as an RBM
was important to achieve the good results reported (Satdkiay & Hinton, 2009). In both settings, we
optimize a proxy criterion that is layer-local before finging with respect to the whole deep architecture.
Here, we draw connections between existing work and appesahat could help to deal with difficult
optimization problems, based on the principlecaitinuation method§Allgower & Georg, 1980). Al-
though they provide no guarantee to obtain the global optifrtbese methods have been particularly useful
in computational chemistry to find approximate solutionglifficult optimization problems involving the
configurations of molecules (Coleman & Wu, 1994; More & Wu9&9Wu, 1997). The basic idea is to
first solve an easier and smoothed version of the problem eadliglly consider less smoothing, with the
intuition that a smooth version of the problem reveals thabgl picture, just like with simulated anneal-
ing (Kirkpatrick, Jr., , & Vecchi, 1983). One defines a singkerameter family of cost functior, (6) such
thatCyy can be optimized more easily (maybe conveX)nwhile C; is the criterion that we actually wish
to minimize. One first minimize€, (#) and then gradually increas@svhile keeping at a local minimum
of C(0). Typically Cy is a highly smoothed version @f;, so thatf gradually moves into the basin of
attraction of a dominant (if not global) minimum 6f.

9.1.1 Greedy Layer-wise Training of DBNs as a Continuation Mthod

The greedy layer-wise training algorithm for DBNs descdibeSection 6.1 can be viewed as an approximate
continuation method, as follows. First of all recall (Sent8.1) that the top-level RBM of a DBN can be
unfolded into an infinite directed graphical model with tiggrameters. At each step of the greedy layer-
wise procedure, we untie the parameters of the top-level RBM the parameters of the penultimate level.
So one can view the layer-wise procedure as follows. The hsidecture remains the same, an infinite
chain of sigmoid belief layers, but we change the constminthe parameters at each step of the layer-
wise procedure. Initially all the layers are tied. Afteritiag the first RBM (i.e. optimizing under this
constraint), we untie the first level parameters from the wier training the second RBM (i.e. optimizing
under this slightly relaxed constraint), we untie the sectavel parameters from the rest, etc. Instead
of a continuum of training criteria, we have a discrete sageeof (presumably) gradually more difficult
optimization problems. By making the process greedy we fxgarameters of the firgtlevels after they
have been trained and only optimize {liet 1)-th, i.e. train an RBM. For this analogy to be strict we would
need to initialize the weights of the newly added RBM with trenspose of the previous one. Note also
that instead of optimizing all the parameters, the greeggrlavise approach only optimizes the new ones.
But even with these approximations, this analysis suggastxplanation for the good performance of the
layer-wise training approach in terms of reaching bettértsms.
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9.1.2 Unsupervised to Supervised Transition

The experiments in many papers clearly show that an unsisgerpre-training followed by a supervised
fine-tuning works very well for deep architectures. Whena@vious work on combining supervised and
unsupervised criteria (Lasserre et al., 2006) focus ondbalarization effect of an unsupervised criterion
(and unlabeled examples, in semi-supervised learning)dibcussion of Section 4.2 suggests that part of
the gain observed with unsupervised pre-training of deg¢war&s may arise out of better optimization of
the lower layers of the deep architecture.

Much recent work has focused on starting from an unsupeatveggresentation learning algorithm (such
as sparse coding) and fine-tuning the representation wiikcaminant criterion or combining the discrimi-
nant and unsupervised criteria (Larochelle & Bengio, 2088iral et al., 2009; Bagnell & Bradley, 2009).

In Larochelle and Bengio (2008), an RBM is trained with a feart visible vector that includes both
the inputx and the target clasg. Such an RBM can either be trained to model the jditk, y) (e.g.
by Contrastive Divergence) or to model the conditioR4l/|x) (the exact gradient of the conditional log-
likelihood is tractable). The best results reported (Lasdle & Bengio, 2008) combine both criteria, but the
model is initialized using the non-discriminant criterion

In Mairal et al. (2009), Bagnell and Bradley (2009) the takraining the decoder bases in a sparse
coding system is coupled with a task of training a classifretmof the sparse codes. After initializing the
decoder bases using non-discriminant learning, they cdinbauned using a discriminant criterion that
is applied jointly on the representation parameters (ite,first layer bases, that gives rise to the sparse
codes) and a set of classifier parameters (e.g., a lineaif@ashat takes the representation codes as input).
According to Mairal et al. (2009), trying to directly optin@ the supervised criterion without first initializing
with non-discriminant training yielded very poor resultis fact, they propose amooth transitiorfrom
the non-discriminant criterion to the discriminant onende performing a kind of continuation method to
optimize the discriminant criterion.

9.1.3 Controlling Temperature

Even optimizing the log-likelihood of a single RBM might belifficult optimization problem. It turns out
that the use of stochastic gradient (such as the one obthim®dCD-k) and small initial weights is again
close to a continuation method, and could easily be turneddne. Consider the family of optimization
problems corresponding to thegularization path(Hastie, Rosset, Tibshirani, & Zhu, 2004) for an RBM,
e.g., with/ regularization of the parameters, the family of traininigecia parametrized by € (0, 1]:

Ca(6) = = log Po(xi) — ||6]1* log . (59)

When\ — 0, we haved — 0, and it can be shown that the RBM log-likelihood becomes eariu 6.
When A — 1, there is no regularization (note that some intermedialigevaf A might be better in terms
of generalization, if the training set is small). Contmadjithe magnitude of the offsets and weights in an
RBM is equivalent to controlling théemperaturein a Boltzmann machine (a scaling coefficient for the
energy function). High temperature corresponds to a higtdghastic system, and at the limit a factorial
and uniform distribution over the input. Low temperatureresponds to a more deterministic system where
only a small subset of possible configurations are plausible

Interestingly, one observes routinely that stochasticligra descent starting from small weights grad-
ually allows the weights to increase in magnitude, thus exiprately following the regularization path.
Early stoppingis a well-known and efficient capacity control techniquedazhen monitoring performance
on a validation set during training and keeping the bestmaters in terms of validation set error. The
mathematical connection between early stoppingéandgularization (along with margin) has already been
established (Zinkevich, 2003; Collobert & Bengio, 20043r8ng from small parameters and doing gradient
descent yields gradually larger parameters, correspgridia gradually less regularized training criterion.
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However, with ordinary stochastic gradient descent (wilerplicit regularization term), there is no guar-
antee that we would be tracking the sequence of local mingsacated with a sequence of values\of
in eq. 59. It might be possible to slightly change the stottbagadient algorithm to make it track better
the regularization path, (i.e. make it closer to a contiimmetnethod), by controlling. explicitly, gradually
increasing\ when the optimization is near enough a local minimum for therent value of\. Note that
the same technique might be extended for other difficult lireear optimization problems found in machine
learning, such as training a deep supervised neural netwlekwant to start from a globally optimal so-
lution and gradually track local minima, starting from hegaegularization and moving slowly to little or
none.

9.1.4 Shaping: Training with a Curriculum

Another continuation method may be obtained by graduadiggforming the training task, from an easy
one (maybe convex) where examples illustrate the simplecets, to the target one (with more difficult
examples). Humans need about two decades to be trainedyasufuitional adults of our society. That
training is highly organized, based on an education systethaacurriculum which introduces different
concepts at different times, exploiting previously leargencepts to ease the learning of new abstractions.
The idea of training a learning machine with a curriculum bartraced back at least to Elman (1993). The
basic idea is tetart small learn easier aspects of the task or easier sub-tasks, eamdjtadually increase
the difficulty level. From the point of view of building rementations, advocated here, the idea is to learn
representations that capture low-level abstractions firstl then exploit them and compose them to learn
slightly higher-level abstractions necessary to explasrercomplex structure in the data. By choosing
which examples to present and in which order to present tbehretlearning system, one cgunidetraining
and remarkably increase the speed at which learning cam.o€his idea is routinely exploited ianimal
training and is calledshaping(Skinner, 1958; Peterson, 2004; Krueger & Dayan, 2009).

Shaping and the use of a curriculum can also be seen as catmimmethods. For this purpose, consider
the learning problem of modeling the data coming from a ingjulistribution?. The idea is to reweigh the
probability of sampling the examples from the training disttion, according to a given schedule that starts
from the “easiest” examples and moves gradually towardmples illustrating more abstract concepts. At
pointt in the schedule, we train from distributidn, with P, = P and P, chosen to be easy to learn. Like
in any continuation method, we move along the schedule wieetirner has reached a local minimum at
the current point in the schedule, i.e., when it has sufficiently mastered theipusly presented examples
(sampled fromP,). Making small changes incorresponds to smooth changes in the probability of samplin
examples in the training distribution, so we can construmitinuous path starting from an easy learning
problem and ending in the desired training distributionisTittea is developed further in Bengio, Louradour,
Collobert, and Weston (2009), with experiments showingebefeneralization obtained when training with
a curriculum leading to a target distribution, comparedaining only with the target distribution, on both
vision and language tasks.

There is a connection between the shaping/curriculum idddte greedy layer-wise idea. In both cases
we want to exploit the notion that a high level abstractiomwere conveniently be learned once appropriate
lower-level abstractions have been learned. In the casheofalyer-wise approach, this is achieved by
gradually adding more capacity in a way that builds upon ipresly learned concepts. In the case of the
curriculum, we control the training examples so as to make that the simpler concepts have actually been
learned before showing many examples of the more advancexpts. Showing complicated illustrations
of the more advanced concepts is likely to be generally aemafstime, as suggested by the difficulty for
humans to grasp a new idea if they do not first understand theepds necessary to express that new idea
compactly.

With the curriculum idea we introduce a teacher, in addit@tie learner and the training distribution or
environment. The teacher can use two sources of informadidacide on the schedule: (a) prior knowledge
about a sequence of concepts that can more easily be leameedpresented in that order, and (b) monitoring
of the learner’s progress to decide when to move on to newriabteom the curriculum. The teacher has
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to select a level of difficulty for new examples which is a coppise between “too easy” (the learner will
not need to change its model to account for these examplésitam hard” (the learner cannot make an
incremental change that can account for these examplesgonrii most likely be treated as outliers or
special cases, i.e. not helping generalization).

9.2 Why Unsupervised Learning is Important

One of the claims of this paper is that powerful unsupervigesemi-supervised (or self-taught) learning is
a crucial component in building successful learning altpons for deep architectures aimed at approaching
Al. We briefly cover the arguments in favor of this hypothésise:

e Scarcity of labeled examples and availability of many uela examples (possibly not only of the
classes of interest, as in self-taught learning (Raina €2@07)).

e Unknown future tasks: if a learning agent does not know whairé learning tasks it will have to
deal with in the future, but it knows that the task will be defirwith respect to a world (i.e. random
variables) that it can observe now, it would appear veryorati to collect and integrate as much
information as possible about this world so as to learn wtektas it tick.

e Once a good high-level representation is learned, othenilggtasks (e.g., supervised or reinforce-
ment learning) could be much easier. We know for examplekéraiel machines can be very powerful
if using an appropriate kernel, i.e. an appropriate feaspace. Similarly, we know powerful rein-
forcement learning algorithms which have guarantees ircfs® where the actions are essentially
obtained through linear combination of appropriate fezguWe do not know what the appropriate
representation should be, but one would be reassured ipiticed the salient factors of variation in
the input data, and disentangled them.

e Layer-wise unsupervised learning: this was argued in 8edti3. Much of the learning could be done
using information available locally in one layer or subdayf the architecture, thus avoiding the
hypothesized problems with supervised gradients propagttrough long chains with large fan-in
elements.

e Connected to the two previous points is the idea that unsigest learning could put the parameters
of a supervised or reinforcement learning machine in a refiom which gradient descent (local
optimization) would yield good solutions. This has beernifiet empirically in several settings, in
particular in the experiment of Figure 7 and in Bengio et 20Q7), Larochelle et al. (2009), Erhan
et al. (2009).

e The extra constraints imposed on the optimization by réggithe model to capture not only the
input-to-target dependency but also the statistical @eifids of the input distribution might be helpful
in avoiding some poorly generalizing apparent local miniith@se that do not correspond to good
modeling of the input distribution). Note that in generalfrexconstraints may also create more local
minima, but we observe experimentally (Bengio et al., 2003} both training and test error can
be reduced by unsupervised pre-training, suggesting ligatihsupervised pre-training moves the
parameters in a region of space closer to local minima cporeding to learning better representations
(in the lower layers). It has been argued (Hinton, 2006) {debatable) that unsupervised learning
is less prone to overfitting than supervised learning. Deehitgctures have typically been used to
construct a supervised classifier, and in that case the enggpd learning component can clearly be
seen as a regularizer or a prior (Ng & Jordan, 2002; Lasseale 2006; Liang & Jordan, 2008; Erhan
et al., 2009) that forces the resulting parameters to makseseot only to model classes given inputs
but also to capture the structure of the input distribution.
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9.3

Open Questions

Research on deep architectures is still young and manyignesemain unanswered. The following are
potentially interesting.

1.

10.
11.

12.

13.

14.

15.

16.

Can the results pertaining to the role of computationptiié circuits be generalized beyond logic
gates and linear threshold units?

. Is there a depth that is mostly sufficient for the compatetinecessary to approach human-level

performance of Al tasks?

. How can the theoretical results on depth of circuits witixed size input be generalized to dynamical

circuits operating in time, with context and the possipitf recursive computation?

. Why is gradient-based training of deep neural network®frandom initialization often unsuccessful?

. Are RBMs trained by CD doing a good job of preserving theiinfation in their input (since they

are not trained as auto-encoders they might lose informatimut the input that may turn out to be
important later), and if not how can that be fixed?

. Is the supervised training criterion for deep architeegi{and maybe the log-likelihood in deep Boltz-

mann machines and DBNSs) really fraught with actual poorllogaima or is it just that the criterion is
too intricate for the optimization algorithms tried (suchgradient descent and conjugate gradients)?

. Is the presence of local minima an important issue inimgikRBMs?

. Could we replace RBMs and auto-encoders by algorithrmsatbald be proficient at extracting good

representations but involving an easier optimization [@ol) perhaps even a convex one?

. Current training algorithms for deep architectures imes many phases (one per layer, plus a global

fine-tuning). This is not very practical in the purely onlgetting since once we have moved into fine-
tuning, we might be trapped in an apparent local minimunt.pessible to come up with a completely
online procedure for training deep architectures thatgrkes an unsupervised component all along?
Note that (Weston et al., 2008) is appealing for this reason.

Should the number of Gibbs steps in Contrastive Divargée adjusted during training?

Can we significantly improve upon Contrastive Divergeriaking computation time into account?
New alternatives have recently been proposed which desertreer investigation (Tieleman, 2008;
Tieleman & Hinton, 2009).

Besides reconstruction error, are there other moreogppte ways to monitor progress during train-
ing of RBMs and DBNs? Equivalently, are there tractable apipnations of the partition function in
RBMs and DBNs? Recent work in this direction (Salakhutdi®&dvurray, 2008; Murray & Salakhut-
dinov, 2009) using annealed importance sampling is enginga

Could RBMs and auto-encoders be improved by imposingedonm of sparsity penalty on the rep-
resentations they learn, and what are the best ways to do so?

Without increasing the number of hidden units, can thgaciy of an RBM be increased using non-
parametric forms of its energy function?

Since we only have a generative model for single derpiairto-encoders, is there a probabilistic
interpretation to models learned $tackedAuto-Encoders oBtackedenoising Auto-Encoders?

How efficient is the greedy layer-wise algorithm formiag Deep Belief Networks (in terms of max-
imizing the training data likelihood)? Is it too greedy?
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17. Can we obtain low variance and low bias estimators of dlgelikelihood gradient in Deep Belief
Networks and related deep generative models, i.e., caningyjtrain all the layers (with respect to
the unsupervised objective)?

18. Unsupervised layer-level training procedures disedisgere help training deep architectures, but ex-
periments suggest that training still gets stuck in appdmmal minima and cannot exploit all the
information in very large datasets. Is it true? Can we go hdybese limitations by developing more
powerful optimization strategies for deep architectures?

19. Can optimization strategies based on continuation ogkstieliver significantly improved training of
deep architectures?

20. Are there other efficiently trainable deep architecturesides Deep Belief Networks, Stacked Auto-
Encoders, and deep Boltzmann machines?

21. Is a curriculum needed to learn the kinds of high-levettaations that humans take years or decades
to learn?

22. Can the principles discovered to train deep architestbe applied or generalized to train recurrent
networks or dynamical belief networks, which learn to repre context and long-term dependencies?

23. How can deep architectures be generalized to repregentiation that, by its nature, might seem not
easily representable by vectors, because of its variabdessid structure (e.g. trees, graphs)?

24. Although Deep Belief Networks are in principle well gditfor the semi-supervised and self-taught
learning settings, what are the best ways to adapt the duteep learning algorithms to these setting
and how would they fare compared to existing semi-supethasgorithms?

25. When labeled examples are available, how should sigsehend unsupervised criteria be combined
to learn the model’s representations of the input?

26. Can we find analogs of the computations necessary for&ive Divergence and Deep Belief Net
learning in the brain?

27. The cortex is not at all like a feedforward neural netwarthat there are significant feedback connec-
tions (e.g. going back from later stages of visual processirearlier ones) and these may serve a role
not only in learning (as in RBMSs) but also in integrating aatial priors with visual evidence (Lee
& Mumford, 2003). What kind of models can give rise to suclerattions in deep architectures, and
learn properly with such interactions?

10 Conclusion

This paper started with a number of motivations: first to @sering to approach Al, then on the intuitive
plausibility of decomposing a problem into multiple levelscomputation and representation, followed by
theoretical results showing that a computational architecthat does not have enough of these levels can
require a huge number of computational elements, and thenadifon that a learning algorithm that relies
only on local generalization is unlikely to generalize welien trying to learn highly-varying functions.
Turning to architectures and algorithms, we first motivadéstributed representations of the data, in
which a huge number of possible configurations of abstradtifes of the input are possible, allowing a
system to compactly represent each example, while opehanddor to a rich form of generalization. The
discussion then focused on the difficulty of successfulyning deep architectures for learning multiple
levels of distributed representations. Although the raador the failure of standard gradient-based methods
in this case remain to be clarified, several algorithms haenlintroduced in recent years that demonstrate
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much better performance than was previously possible witple gradient-based optimization, and we have
tried to focus on the underlying principles behind theircass.

Although much of this paper has focused on deep neural nedespl graphical model architectures, the
idea of exploring learning algorithms for deep architeesishould be explored beyond the neural net frame-
work. For example, it would be interesting to consider egiens of decision tree and boosting algorithms
to multiple levels.

Kernel-learning algorithms suggest another path whichukhbe explored, since a feature space that
captures the abstractions relevant to the distributiontefest would be just the right space in which to apply
the kernel machinery. Research in this direction shouldiciem ways in which the learned kernel would
have the ability to generalize non-locally, to avoid theseuof dimensionality issues raised in Section 3.1
when trying to learn a highly-varying function.

The paper focused on a particular family of algorithms, tleepBelief Networks, and their component
elements, the Restricted Boltzmann Machine, and very neighhors: different kinds of auto-encoders,
which can also be stacked successfully to form a deep acthite We studied and connected together
estimators of the log-likelihood gradient in RestrictedtBmann machines, helping to justify the use of the
Contrastive Divergence update for training RestrictedBoann Machines. We highlighted an optimization
principle that has worked well for Deep Belief Networks amthted algorithms such as Stacked Auto-
Encoders, based on a greedy, layer-wise, unsuperviseization of each level of the model. We found that
this optimization principle is actually an approximatidreomore general optimization principle, exploited
in so-called continuation methods, in which a series of gadlg more difficult optimization problems are
solved. This suggested new avenues for optimizing deeptactires, either by tracking solutions along a
regularization path, or by presenting the system with aseqgel of selected examples illustrating gradually
more complicated concepts, in a way analogous to the wagstadr animals are trained.
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